What is the force on an elementary dipole from a point charge in the same plane?

andre220
Messages
75
Reaction score
1

Homework Statement


Show that the force on an elementary dipole of moment ##\mathbf{p}##, distance ##\mathbf{r}## from a point charge ##q## has components
$$\begin{eqnarray}
F_r &=& -\frac{qp\cos{\theta}}{2\pi\epsilon_0 r^3}\\
F_\theta &=& -\frac{qp\sin{\theta}}{4\pi\epsilon_0 r^3}
\end{eqnarray}$$
along and perpindicular to ##\mathbf{r}## in the plane of ##\mathbf{p}## and ##\mathbf{r}##, where ##\theta## is the angle which ##\mathbf{p}## makes with ##\mathbf{r}##.

Homework Equations


$$\Phi(\vec{r}) = \frac{1}{4\pi\epsilon_0}\frac{\vec{p}\cdot\vec{r}}{r^3}$$
$$F = -\frac{d\Phi(\vec{r})}{dr}$$
$$\vec{p} = Q\vec{r}$$

The Attempt at a Solution


Frankly, I do not know how to start this one. I need to find the force on the charge from the dipole. To do so, I take the derivative of ##\Phi## and find the force using Coulomb's law equation. And them decompose it in terms of ##r## and ##\theta##. Is this the right direction?
 
Physics news on Phys.org
Note that the force is the gradient of the potential. What you have written down in the relevant equations is simply the r-component.

Also, please show us what you get when you try to do what you said.

Note: ##Q\vec r## is the dipole moment of a point charge ##Q## in ##\vec r## with respect to the origin. This is not the situation in your problem, which has a fundamental dipole ##\vec p##.
 
andre220 said:
$$F = -\frac{d\Phi(\vec{r})}{dr}$$

Hi. The above equation is not right and you can tell because force is a vector and your expression gives you a scalar.
In 3 dimensions: F = –∇Φ, which is a gradient and you'll have to look up how to take it in spherical coordinates because the expression is far from obvious.
Lastly, without loss of generality you can take p to be along the z-axis so that pr = pr cosθ, which should simplify your calculations...
 
Sorry, didn't see Orodruin's post... I'll leave it to him from now on.
 
Yes, thank you. It was quite simple once you pointed out the fact that ##F## should be a vector. And that ##p\cdot r = p r \cos{\theta}##. Thank you for your help.
 
No problem. I just have to make it clear that although you have in general p⋅r = pr cosδ, where δ is the angle between p and r, you can take δ = θ (the polar angle of your spherical coordinates) only if you have freedom in choosing the direction of p, which is the case here. It's a detail but always important to understand clearly...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top