What is the function of countercurrent exhanger in kidney?

  • Thread starter Thread starter sameeralord
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
The discussion centers on the countercurrent multiplier and countercurrent exchanger mechanisms in the kidney, particularly their roles in maintaining osmotic gradients essential for water reabsorption. The countercurrent multiplier, primarily involving the loop of Henle, creates a hypertonic environment in the medulla by actively transporting salts out of the ascending limb, which is impermeable to water, while the descending limb allows water to exit. This process amplifies the osmotic gradient necessary for effective water reabsorption in the collecting ducts. The countercurrent exchanger, associated with the vasa recta, helps preserve this gradient by facilitating passive diffusion of water and solutes without disrupting the medullary hypertonicity. Urea is also mentioned as playing a role in maintaining the osmotic gradient, although its exact function remains somewhat unclear. Overall, both mechanisms are crucial for regulating the body's salt and water balance, particularly in response to varying hydration levels.
sameeralord
Messages
659
Reaction score
3
Hello everyone,

I understand that countercurrent multiplier makes the area around medulla hypertonic, so water can go out of collecting duct. When I checked the function of countercurrent exchanger it was to kep this concentration gradient intact. I looked at the solutes movement in countercurrent exchanger but I don't understand how it keeps this intact or why it it nessecary at all. I understand countercurrent multiplier, and isn't that enough. Could anyone please help. Thanks :smile:
 
Biology news on Phys.org
I agree, it's a confusing concept. The purpose is to regulate the body salt and water content (homeostasis). The mechanism is the 'countercurrent multiplier". Here's the best analogy I can think of:

Imagine you are standing on ice (barefoot). Never mind why. Your blood travels down your leg, through your foot, and up your leg. If the artery and vein were far apart, your warm blood would cool considerably as it went through your foot, and the ice-cold blood would travel up and have to get warmed, which costs you a lot of energy.

Instead, let your artery and vein be very close together. (I don't know if they are in real life, the original analogy uses a bird, because birds hang out on the ice for long periods of time)

Now, as the warm blood descends, it gives up some heat to the venous blood going back up. This way, instead of the heat going out of your feet and into the ice, the heat is used (the countercurrent) to warm the cooled blood. And your feet stay at the same temperature either way!

That's the principle of the countercurrent multiplier, but with osmolarity rather than heat.
 
Andy Resnick said:
Imagine you are standing on ice (barefoot). Never mind why.

That made me laugh!

I also covered this recently. I found it difficult to see how the gradient could be maintained between the loop of henle and the interstitial fluid in a passive process (as I was led to believe it is), but I think active transport is involved in the ascending limb, and that urea also features in the process. Without these, I always picture the gradient being reduced until it is in equilibrium (even if the fluid is moving).

Can you clarify what you mean by countercurrent exchanger and countercurrent multiplier?
 
Silbernagel's "Color Atlas of Physiology" refers to the flow of water in the vasa recta as the 'countercurrent exchange'. This is accomplished by the passive diffusion of water from the decending vasa recta to the ascending vasa recta in the osmostic gradient of the medulla. This allows normal blood supply to the medulla without altering the local hypertonicity of the medulla. The term 'countercurrent' refers to the fact that the direction of flow in each arm is opposite to the other.

The 'countercurrent multiplier' refers specifically to the loop of Henle. The descending limb is water permeable, salt impermeable, while the ascending limb is water impermeable, salt permeable- the pumping of salt out of the ascending limb requires energy- and amplifies the slight osmotic gradient that exists between neighboring points of the ascending and descending limb to a large gradient along the total length of the limb. The longer the loop (the deeper into the medulla), the steeper the gradient.

Urea does play a role in maintaining the gradient- I'm not exactly sure how, but it seems to be an osmotic buffer, like albumin in the blood (AFAIK).

Silbernagel's book is an excellent resource, btw.
 
Thanks Andy.

Andy Resnick said:
The descending limb is water permeable, salt impermeable, while the ascending limb is water impermeable, salt permeable- the pumping of salt out of the ascending limb requires energy- and amplifies the slight osmotic gradient that exists between neighboring points of the ascending and descending limb to a large gradient along the total length of the limb.

I presume it is necessary to maintain the gradient as well as amplify it?

Andy Resnick said:
Urea does play a role in maintaining the gradient- I'm not exactly sure how, but it seems to be an osmotic buffer, like albumin in the blood (AFAIK)

Ohhhhh, I always imagined it just to increase the concentration gradient for the passage of water out of the loop of henle. I have a Biology textbook, but its not that clear, internet sources are even worse...
 
nobahar said:
I presume it is necessary to maintain the gradient as well as amplify it?

Good question- the osmotic gradient in the medulla can get washed out by drinking lots of water (for example), and I don't know the mechanism that re-establishes the gradient.

http://www.springerlink.com/content/k286l27221455854/
 
https://www.nhs.uk/mental-health/conditions/body-dysmorphia/ Most people have some mild apprehension about their body, such as one thinks their nose is too big, hair too straight or curvy. At the extreme, cases such as this, are difficult to completely understand. https://www.msn.com/en-ca/health/other/why-would-someone-want-to-amputate-healthy-limbs/ar-AA1MrQK7?ocid=msedgntp&cvid=68ce4014b1fe4953b0b4bd22ef471ab9&ei=78 they feel like they're an amputee in the body of a regular person "For...
Thread 'Did they discover another descendant of homo erectus?'
The study provides critical new insights into the African Humid Period, a time between 14,500 and 5,000 years ago when the Sahara desert was a green savanna, rich in water bodies that facilitated human habitation and the spread of pastoralism. Later aridification turned this region into the world's largest desert. Due to the extreme aridity of the region today, DNA preservation is poor, making this pioneering ancient DNA study all the more significant. Genomic analyses reveal that the...
Whenever these opiods are mentioned they usually mention that e.g. fentanyl is "50 times stronger than heroin" and "100 times stronger than morphine". Now it's nitazene which the public is told is everything from "much stronger than heroin" and "200 times stronger than fentany"! Do these numbers make sense at all? How do they arrive at them? Kill thousands of mice? En passant: nitazene have already been found in both Oxycontin pills and in street "heroin" here, so Naloxone is more...
Back
Top