What is the Greatest Common Divisor of Two Polynomials?

geoffrey159
Messages
535
Reaction score
72

Homework Statement


What is the greatest common divisor of ##X^a - 1 ## and ## X^b - 1 ##, ##(a,b) \in \mathbb{N}^\star## ?

Homework Equations

The Attempt at a Solution



Assuming that ## a\le b ##, I find by euclidian division of ##b## by ##a## that

## b = an + r \Rightarrow X^b - 1 = (X^a-1) (\sum_{k=1}^{n} X ^ {b-ka}) + X ^r - 1 ##

So ##\text{gcd}(X^b - 1,X^a - 1) = \text{gcd}(X^a - 1,X^r - 1) ##
So if I apply Euclid's algorithm on ##a## and ##b##, I will automatically get that the last non-zero remainder, which is ## \text{gcd}(a,b)##, guarantees that ## X ^{ \text{gcd}(a,b) } - 1 ## is the last non-zero remainder of the algorithm applied on ##X^a - 1 ## and ## X^b - 1 ##, and therefore is their greatest common divisor. Right ?
 
Physics news on Phys.org
Yes, It is the greatest commun divisor :)
 
OK thank you ;-)
 
geoffrey159 said:
So ##\text{gcd}(X^b - 1,X^a - 1) = \text{gcd}(X^a - 1,X^r - 1) ##

In MathJax and LaTeX, don't write \text{gcd}; instead write \gcd. Unlike \text{gcd} this will yield proper spacing in expressions like ##8\gcd(a,b)##, whereas with \text{gcd} you'll see ##8\text{gcd}(a,b)## instead, with the conspicuous lack of spacing. And the amount of space to the left and right of ##\gcd## will actually depend on the context.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top