What is the height of the Willis Tower in Chicago based on changes in gravity?

  • Thread starter Thread starter math34
  • Start date Start date
  • Tags Tags
    Energy
AI Thread Summary
The Willis Tower's height can be calculated using the difference in gravitational acceleration measured at its top compared to street level, which is 1.36 mm/s² lower. The approach involves using gravitational equations, specifically the change in potential energy and applying a binomial expansion for simplification. Key steps include recognizing that the mass of the object is not needed when calculating acceleration and focusing on the Earth's radius in the calculations. After simplifying the equations, the final height calculated is approximately 441.4 meters. This method effectively demonstrates how gravity changes with height.
math34
Messages
10
Reaction score
0

Homework Statement




A sensitive gravimeter is carried to the top of Chicago’s Willis (formerly Sears) Tower, where its reading for the acceleration of gravity is 1.36 mm/s^2 lower than at street level.

Find the building's height, h=?

Homework Equations





The Attempt at a Solution




I started this problem with this:

g - g' = 0.00136 m/s^2

now find the change in potential energy of gravity:

GMm/(Radius of earth)^2 - GMm/(Radius of Earth + h)^2

using this we should be able to simplify but i am not getting too far from here, it is a bit messy and i am not getting too much to cancel out here...why?

can anyone help me out?

please and thank you!
 
Physics news on Phys.org
math34 said:
I started this problem with this:

g - g' = 0.00136 m/s^2
OK.

now find the change in potential energy of gravity:
You're finding the change in g, not gravitational PE.

GMm/(Radius of earth)^2 - GMm/(Radius of Earth + h)^2
OK, except that it should be only GM in the numerator, not GMm.

using this we should be able to simplify but i am not getting too far from here, it is a bit messy and i am not getting too much to cancel out here...why?
Assume that h is small enough compared to the Earth's radius that you can use a binomial expansion approximation.

Hint: (R + h)^2 = R^2(1 + h/R)^2; now take advantage of the fact that h/R << 1.
 
Look at \displaystyle \frac{1}{R^2}-\frac{1}{(R+h)^2}=\frac{(R+h)^2-R^2}{R^2(R+h)^2}

The numerator of the expression on the right side of the equation is the difference of squares.

Factor that.

R > 6300 km. I doubt that the building is more than 1 km tall (≈5/8 mile).
 
why is m not included in the formula?

going off the rest you said:

Re = radius of Earth

GM/(Re)^2 - GM/(Re + h)^2

Gm[(Re + h)^2 - (Re)^2] /(Re)^2 (Re + h)^2

using this: (R + h)^2 = R^2(1 + h/R)^2

i reduce down to :

Gm [ h^2/Re^2 + 2h/Re] / Re^2

does this sound right? still seems like a lot going on
 
SammyS said:
Look at \displaystyle \frac{1}{R^2}-\frac{1}{(R+h)^2}=\frac{(R+h)^2-R^2}{R^2(R+h)^2}

The numerator of the expression on the right side of the equation is the difference of squares.

Factor that.

R > 6300 km. I doubt that the building is more than 1 km tall (≈5/8 mile).

Did you cancel out GM?
 
math34 said:
why is m not included in the formula?
Because you want the acceleration, not the force.

going off the rest you said:

Re = radius of Earth

GM/(Re)^2 - GM/(Re + h)^2

Gm[(Re + h)^2 - (Re)^2] /(Re)^2 (Re + h)^2

using this: (R + h)^2 = R^2(1 + h/R)^2

i reduce down to :

Gm [ h^2/Re^2 + 2h/Re] / Re^2
Looks good. Now get rid of higher order terms, like (h/Re)2. They are too small to worry about. (And that m should be M, the mass of the earth.)

does this sound right? still seems like a lot going on
You're on the right track. Keep going.
 
right. now i get :

2GMh/Re^3

and get with an answer of 441.4 meterswhich turns out to be the right answer, sweet. Thanks everyone!
 
Back
Top