MHB What is the image of \(ax+by+c=0\) under \(f\)?

Poirot1
Messages
243
Reaction score
0
Consider the affine transformation \(f(P)=\begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}P+\begin{bmatrix}5\\6\end{bmatrix}\).

Find the image of \(ax+by+c=0\) under \(f\).

My answer is \(\left(a-\frac{b}{2}\right)y+\left(\frac{3b}{2} -2a\right)x+4a-\frac{9b}{2}+c=0\).
 
Last edited by a moderator:
Physics news on Phys.org
the command is $\text{\begin{pmatrix}...\end{pmatrix}}$ for a matrix with parentheses, and the same but {bmatrix} for a matrix delimited by brackets, and {vmatrix} for a mtrix delimited by vertical bars (like when you indicate you're taking the determinant).

the format for the rows is:

(entry)&(entry)&(entry)

a double back-slash indicates the start of a new row, so:

$\text{\begin{bmatrix} 2&1&0\\1&1&-3\\0&0&1 \end{bmatrix}}$

gives:

$\begin{bmatrix} 2&1&0\\1&1&-3\\0&0&1 \end{bmatrix}$

so your transformation is:

$f(P) = \begin{bmatrix}1&2\\3&4 \end{bmatrix}P + \begin{bmatrix}5\\6 \end{bmatrix}$

i do not know how you arrived at your answer, but after a lengthy calculation i got:

(4a-3b)x + (b-2a)y + (-8a+9b-2c) = 0

which appears to be your equation multiplied by -2 (-2*0 is still 0, so it shouldn't matter).

my calculations depended on b being non-zero. performing a second calculation when b = 0, i got:

2ax - ay + (4a-c) = 0, which leads me to believe we're both right.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
3K
Replies
2
Views
1K
Replies
7
Views
1K
Replies
2
Views
2K
Replies
6
Views
2K
Back
Top