MHB What is the image of \(ax+by+c=0\) under \(f\)?

Poirot1
Messages
243
Reaction score
0
Consider the affine transformation \(f(P)=\begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}P+\begin{bmatrix}5\\6\end{bmatrix}\).

Find the image of \(ax+by+c=0\) under \(f\).

My answer is \(\left(a-\frac{b}{2}\right)y+\left(\frac{3b}{2} -2a\right)x+4a-\frac{9b}{2}+c=0\).
 
Last edited by a moderator:
Physics news on Phys.org
the command is $\text{\begin{pmatrix}...\end{pmatrix}}$ for a matrix with parentheses, and the same but {bmatrix} for a matrix delimited by brackets, and {vmatrix} for a mtrix delimited by vertical bars (like when you indicate you're taking the determinant).

the format for the rows is:

(entry)&(entry)&(entry)

a double back-slash indicates the start of a new row, so:

$\text{\begin{bmatrix} 2&1&0\\1&1&-3\\0&0&1 \end{bmatrix}}$

gives:

$\begin{bmatrix} 2&1&0\\1&1&-3\\0&0&1 \end{bmatrix}$

so your transformation is:

$f(P) = \begin{bmatrix}1&2\\3&4 \end{bmatrix}P + \begin{bmatrix}5\\6 \end{bmatrix}$

i do not know how you arrived at your answer, but after a lengthy calculation i got:

(4a-3b)x + (b-2a)y + (-8a+9b-2c) = 0

which appears to be your equation multiplied by -2 (-2*0 is still 0, so it shouldn't matter).

my calculations depended on b being non-zero. performing a second calculation when b = 0, i got:

2ax - ay + (4a-c) = 0, which leads me to believe we're both right.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K