What is the importance of scaling in the N-S equations?

  • Thread starter Thread starter hanson
  • Start date Start date
  • Tags Tags
    Scaling
AI Thread Summary
Scaling in the Navier-Stokes (N-S) equations is crucial for simplifying fluid dynamics analysis by converting dimensional quantities into dimensionless forms, such as velocity and pressure. This transformation allows for easier comparison of terms, as dimensionless coefficients like Reynolds and Froude numbers highlight the relative importance of different forces in the equations. By reducing the number of symbols, the equations become more manageable and reveal standard forms that facilitate mathematical recognition and analogies between systems. Additionally, understanding scaling aids in experimental modeling, enabling cost-effective simulations, such as wind tunnel tests. Overall, dimensionless equations enhance clarity and facilitate comparisons that are not possible with dimensional quantities.
hanson
Messages
312
Reaction score
0
Hi all!
I am having problems with understanding the scaling process of the N-S equations in fluid dynamics.
From textbooks, I see that each quantity say velocity, time, length...etc are all divided some some reference values in order to obtain some dimensionaless quantity V*, t*, p*, g* etc..
And the N-S equations are then rewrite into a dimensionless form, the coefficients beceome the Reynolds number, Froude number etc...
And the writer says after having this dimensionless equation, we can know the importance of the terms by just looking at the coefficients.

That's what the textbook said, and I don't really understand. I can't catch the reason for making it in a dimensionless form. Can't I still judge the importance of the terms by looking at the coefficients of the terms when the equation have dimensions? Why must we transform it to be dimensionless?

Can anyone help me out?
 
Physics news on Phys.org
could anyone please help?
 
Certainly, you don't have to use dimensionless variables.

However, using dimensionless variables can simplify the analysis of a problem.
First, it cuts down the number of symbols in the equation. (Less writing!) This often highlights the "[standard] form" of an equation. It may be easier to recognize the mathematics, and possibly draw analogies between different physical systems. (For example, it may help you recognize that the mass-spring system is analogous to an inductor-capacitor system.)

Additionally, one can't compare A with B (i.e. one can't say A>B) if they carry different dimensions. However, if \alpha and \beta are dimensionless, then one can compare them. In particular, it may useful to know that \alpha\gg\beta so that the \beta-term in an expression like \alpha \blacksquare + \beta \blacksquare +\ldots may be neglected.

Implicit in the above is the idea of "scaling". For example, if you know how a problem scales, you can experimentally model it less expensively. (For example, wind tunnel tests for airplanes. Another example: special effects using miniatures and slow-motion.)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top