Asuralm
- 35
- 0
Dear all:
I have a problem about the inner product of a function. Give a function
<br /> \begin{displaymath}<br /> f(x) = \left\{ \begin{array}{ll}<br /> x & \textrm{if $x \in [0,1]$}\\<br /> -x+2 & \textrm{if $x \in (1, 2]$}<br /> \end{array}<br /> \end{displaymath}<br /> \{
What's the value of the inner product of the function itself over [0,2]?
<br /> \begin{displaymath}<br /> <f(x), f(x)> = \int_{x=0}^{x=2} f(x)f(x) d_x<br /> \end{displaymath}<br />]
If given another function
<br /> <br /> g(x) = \left\{ \begin{array}{ll}<br /> x-1 & \textrm{if $x \in [1,2]$}\\<br /> -x+3 & \textrm{if $x \in (2, 3]$}<br /> \end{array}<br /> <br /> \{
What's the inner product of f(x) and g(x) please?
Thanks for answering.
I have a problem about the inner product of a function. Give a function
<br /> \begin{displaymath}<br /> f(x) = \left\{ \begin{array}{ll}<br /> x & \textrm{if $x \in [0,1]$}\\<br /> -x+2 & \textrm{if $x \in (1, 2]$}<br /> \end{array}<br /> \end{displaymath}<br /> \{
What's the value of the inner product of the function itself over [0,2]?
<br /> \begin{displaymath}<br /> <f(x), f(x)> = \int_{x=0}^{x=2} f(x)f(x) d_x<br /> \end{displaymath}<br />]
If given another function
<br /> <br /> g(x) = \left\{ \begin{array}{ll}<br /> x-1 & \textrm{if $x \in [1,2]$}\\<br /> -x+3 & \textrm{if $x \in (2, 3]$}<br /> \end{array}<br /> <br /> \{
What's the inner product of f(x) and g(x) please?
Thanks for answering.
Last edited: