Daniel's approach probably works equally well; here's another approach:
\frac{1}{1+\cos^{2}x}=\frac{1}{\cos^{2}x}\frac{1}{1+\frac{1}{\cos^{2}x}}=(\frac{d}{dx}tan(x))\frac{1}{2+\tan^{2}x}
Thus, setting u=tan(x), we have \frac{du}{dx}dx=du, that is:
\int\frac{dx}{1+\cos^{2}x}=\int\frac{du}{2+u^{2}}
I'm reviewing Meirovitch's "Methods of Analytical Dynamics," and I don't understand the commutation of the derivative from r to dr:
$$
\mathbf{F} \cdot d\mathbf{r} = m \ddot{\mathbf{r}} \cdot d\mathbf{r} = m\mathbf{\dot{r}} \cdot d\mathbf{\dot{r}}
$$