The thinker
- 54
- 0
Homework Statement
Write out:
H_{SE}(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)
and
exp(-iH_{SE}t)(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)
Where:
H_{SE}=\sum_{\alpha,j}\gamma(\alpha,j)P^{(\alpha)}\otimes\left|e_{j}\right\rangle\left\langle e_{j}\right|
and
P^{(\alpha)}=\sum_{i_{\alpha}}\left|i_{\alpha}\right\rangle\left\langle i_{\alpha}\right|
(\left|i_{\alpha}\right\rangle can be written \left|\right\alpha,i_{\alpha}\rangle where alpha is a quantum number indexed by i_{\alpha} )
The Attempt at a Solution
For the first part I'm fairly sure it comes out as:
\sum_{\beta,j}\gamma(\beta,j)\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle
But the second part I am not sure of, is it something like:
(Cos(t)-i\gamma(\alpha,j)Sin(t))(\left|\right\beta,i_{\beta}\rangle\otimes\left|\right e_{j}\rangle)
Thanks!