What is the Intersection of a Plane and Cylinder?

  • Thread starter Thread starter electron2
  • Start date Start date
  • Tags Tags
    Graph
electron2
Messages
46
Reaction score
0
x^2+y^2=1

x+y+z=1

i can't see how the plane cuts the cylinder all threw

i drawed drawed
x+y=1 (z=0)
x+z=1 (y=0)
y+z=1 (x=0)

and i get a triangle which is stuck in the middle of the cilinder
instead of cutting it all threw
 
Physics news on Phys.org
Hi electron2! :smile:

(try using the X2 tag just above the Reply box :wink:)

You're slicing a cylindrical block, so you must get an ellipse.

Just work out where the top the bottom and the two "sides" are. :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top