What is the Inverse Laplace Transform of 1/(z^2)(z^2+1) using Residues?

  • Thread starter Thread starter chocok
  • Start date Start date
  • Tags Tags
    Inverse Laplace
chocok
Messages
21
Reaction score
0
<Inverse Laplace Transform>

Hi, I was given this: F(z) = 1/(z^2)(z^2+1) and was asked to use its residues to compute f(t). [z is a complex number]

The answer I got is -sin(t). But the answer on the book says t-sin(t).
I double checked and the residue of z=0 is 0, I don't get where the t is from.
Please, can anyone help? Thanks
 
Physics news on Phys.org
\frac{1}{z^2(z^2+1)}=\frac{1}{z^2}-\frac{1}{z^2+1}

hence f(t)=t-sin(t).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top