H.B.
- 20
- 0
This theorem (if it is proven) comes also from a formula of kinetic energy.
Has anyone some suggestions about this one.
Definition of f(n):
<br /> \ f(n)=(2^{n-1}a)Mod(a+b) <br />
Definition of g(n):
\<br /> \ g(n)= 4f(n)-2(a+b)+1<br />
Definition of h(n):
<br /> \ h(n)= Sign(f(n))(Sign(g(n))+1) <br />
Theorem:
<br /> \lim_{n\rightarrow\infty}\sum_{k=1}^{n}{h(k)\left(\frac{1}{2}\right)^{k+1}} = \frac{a}{(a+b)} <br />
Thank you for trying.
Has anyone some suggestions about this one.
Definition of f(n):
<br /> \ f(n)=(2^{n-1}a)Mod(a+b) <br />
Definition of g(n):
\<br /> \ g(n)= 4f(n)-2(a+b)+1<br />
Definition of h(n):
<br /> \ h(n)= Sign(f(n))(Sign(g(n))+1) <br />
Theorem:
<br /> \lim_{n\rightarrow\infty}\sum_{k=1}^{n}{h(k)\left(\frac{1}{2}\right)^{k+1}} = \frac{a}{(a+b)} <br />
Thank you for trying.