What is the Limit as x Approaches Negative Infinity of 2x - sqrt(4x^2 + x + 1)?

  • Thread starter Thread starter Suy
  • Start date Start date
  • Tags Tags
    Limit
Suy
Messages
101
Reaction score
0

Homework Statement


lim x->-inf 2*x-sqrt(4*x^2+x+1)


Homework Equations





The Attempt at a Solution


For positive inf, i got -inf(not sure)
but negative inf, i got -1/4
http://www.wolframalpha.com/input/?i=lim+2*x-sqrt%284*x^2%2Bx%2B1%29
but wolfram have switch the answer, which is right, so i don't know which part i am wrong
lim X->-inf
2*x-sqrt(4*x^2+x+1)
2*x-sqrt(4*x^2+x+1)*((2*x+sqrt(4*x^2+x+1))/(2*x+sqrt(4*x^2+x+1))
(4x^2+4x^2-x-1)/(2*x-sqrt(4*x^2+x+1))
-x-1/(2*x-sqrt(4*x^2+x+1))
-x/(2x-sqrt(4x^2) X<0 sqrt(4x^2) =|2x|=-2x
-x/(2x-(-2x))=-1/4

lim x->+inf
-x/(2x-sqrt(4x^2) X>0 sqrt(4x^2) =|2x|=2x
-x/0= -inf?
Thanks
 
Physics news on Phys.org
Suy said:
2*x-sqrt(4*x^2+x+1)
2*x-sqrt(4*x^2+x+1)*((2*x+sqrt(4*x^2+x+1))/(2*x+sqrt(4*x^2+x+1))
Yes, good.

(4x^2+4x^2-x-1)/(2*x-sqrt(4*x^2+x+1))

No, you should have \frac{4x^2-(4x^2+x+1)}{2x+\sqrt{4x^2+x+1}}
You got the numerator wrong - specifically it should be -4x2 not +4x2. And in the denominator, you changed it to a minus when you showed a plus in the previous line.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top