What is the limit of (n/(n-1))^(n+2) as n approaches infinity?

  • Thread starter Thread starter Telemachus
  • Start date Start date
Telemachus
Messages
820
Reaction score
30

Homework Statement


Hi there. I've found some difficulties on solving this limit:
\displaystyle\lim_{n \to{}\infty}{(\displaystyle\frac{n}{n-1})^{n+2}}

I thought of working with the function f(x)=(\displaystyle\frac{x}{x-1})^{x+2}
And then apply L'Hopital

This way:
\displaystyle\lim_{x \to{}\infty}{(\displaystyle\frac{x}{x-1})^{x+2}=e^{\displaystyle\lim_{x \to{}\infty}{(x+2) ln (\displaystyle\frac{x}{x-1})}}=e^{\displaystyle\lim_{x \to{}\infty}{\displaystyle\frac{(\displaystyle\frac{x}{x-1})}{\displaystyle\frac{1}{(x+2)}}}

And then I've applied L'hopital, but it didn't make the things easier. I've applied L'hopital unless two times. I don't know if what I did is right. And I think there must be an easier way of solving this.
 
Physics news on Phys.org
Note that we have ...

\frac{n}{n-1} = 1 + \frac{1}{n-1}

This gives us ...

\left(\frac{n}{n-1}\right)^{n+2} = \left(1+\frac{1}{n-1}\right)^{n-1}\left(1+\frac{1}{n-1}\right)^3

Evaluate the limit as n \to \infty for each of the terms on right and then apply some "limit laws" to justify your result.
 
Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top