What is the Limit of the Centroid of an Area Bounded by the x-Axis and 1-x^n?

tinylights
Messages
18
Reaction score
0

Homework Statement


Okay, so the idea here is to take the centroid bounded by the x-axis and 1-x^n. N should be an even and positive integer. We should take the limit as n approaches infinity of both the x- and y-coords of the centroid, hopefully ending up with (0, 1/2).

Homework Equations


Formula for a centroid: A = integral of f(x), Mx = integral of xf(x), My = integral of f(x)^2 over 2. All of them should be definite integrals with the same "a" and "b" - I picked 0 and 1 and multiplied the whole thing by two since it appears to be an even function.

Then you divide Mx/A for your x-coord, My/A for your y-coord, and take the limit.

The Attempt at a Solution



See above. I am doing these steps over and over again but keep ending up with the same weird things. I get (n+1)/2(n+2) for my Mx/A, and this long convoluted thing for My/A - 1-2n+1/n+1 + 1/2n+1 / 2(1 - 1/n+1). This would be fine except the limit for Mx/A seems to be 1/2, when it really should be 0, and I'm certainly not getting a limit of 1/2 for My/A.

Thanks for your help guys.
 
Physics news on Phys.org
Without seeing all your steps, its kind of hard to see where you could have gone wrong. It may be algebra. If you could; could you show how you got those expressions for Mx/A and My/A? Pictures of your work would suffice.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top