What is the Mathematical Definition of the Pauli Vector?

Grufey
Messages
30
Reaction score
0
Hello

I'm reading my old notes of QM, I found the definition of Pauli vector, as follow

\vec{\sigma}=\sigma_1 e_x+\sigma_2e_y + \sigma_3 e_z

Where e_x. e_y and e_z are unit vectors.

So, here is my question. \sigma_i and e_i are elements of different nature. How can we define the product \sigma_ie_i??

I understand the idea, ok. But, mathematically don't seem right

Thanks in advance
 
Physics news on Phys.org
Although I am not certain what is going on, I will try. If I understand correctly, you are wondering why we can put the matrix and the vector next to each other. I think the idea is similar to product groups and product rings, which are very simple and common constructions where the behavior in one component has little to do with the behavior in the other component. For instance the product of the integers with the rationals, where addition is defined by (n,p)+(m,q)=(n+m,p+q). You might consider a product ring M x M', where M is space of 2x2 matrices, and M' is space of 3x3 matrices. If I did not get your question right, I hope this helps give ideas on how you might reword or fill us in on more about the definitions.
 
It is actually a shorthand (and misleading) notation. The "vector" you mention always appears in either a cross or a dot product in which the <units> are "coupled" with other units, this time real ones, like for momentum operators. So it's not a decomposition of a vector with respect to a basis (i,j,k or ex, ey, ez), it's just a handy notation which shortens some long expressions, i.e. i/o writing p_x \sigma_x + p_y \sigma_y + p_z \sigma_z one writes \displaystyle{\vec{\sigma}\cdot \vec{p}}.
 
Sorry I was too busy this week and I could not reply before.

That's what I thought, it's only a notation. misleading notation.

Regards
 
The same thing happens in relativity, where you have the \sigma_{\mu}. It's no real 4-vector (1-form), just a shorthand notation which is useful, but can be misleading.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top