What is the Mean Number of Oscillatory Quanta After a Hamiltonian Change?

AI Thread Summary
The discussion revolves around a quantum mechanical oscillator transitioning from one Hamiltonian to another, specifically examining the mean number of oscillatory quanta after this change. Participants clarify that "oscillatory quanta" refers to the quantum number n, which indicates energy levels in the new Hamiltonian. The initial state is the ground state of the first Hamiltonian, and the challenge is to express this state as a combination of the new Hamiltonian's eigenstates. Understanding this transformation is crucial for determining the expected value of n in the new system. The conversation emphasizes the need for a proper formulation of the initial state in relation to the new energy eigenstates.
upender singh
Messages
14
Reaction score
0
A quantum mechanical oscillator with the Hamiltonian
H1=p^2/2m +(m(w1)^2 x^2)/2

is initially prepared in its ground state (zero number of oscillatory quanta). Then the
Hamiltonian changes abruptly (almost instantly):
H1→H2=p^2/2m +(m(w2)^2 x^2)/2
What is the mean number of oscillatory quanta upon the transformation?My first question is what does oscillatory quanta exactly means?

Attempt: Theory of quantum harmonic oscillator, the eigenstate formulas, the energy formulas. The only thing that is zero in ground state is n=0, so does it mean oscillatory quanta implies n quantum number.
 
Physics news on Phys.org
You should have posted this in the homework forum, as you'll get a better response.

Let me explain the question at least. The oscillator is in a known state (ground state for first Hamiltonian). The Hamiltonian changes, which means that the energy eigenstates change. Now you have effectively an initial value problem. You know the initial state/wave function, and this you need to express as a linear combination of your new eigenstates.

I suspect the mean oscillatory quanta means the expected value of ##n## in your new system. Where ##n## represents the energy levels in your new system.
 
Hi Perok,
Sorry for posting it at wrong place.
Do you mean that the my initial state is the ground state of the old Hamiltonian. Now since the Hamiltonian has changed, I need to express it(ground state from old Hamiltonian) as a combination of the eigenstates of new Hamiltonian?
 
upender singh said:
Hi Perok,
Sorry for posting it at wrong place.
Do you mean that the my initial state is the ground state of the old Hamiltonian. Now since the Hamiltonian has changed, I need to express it(ground state from old Hamiltonian) as a combination of the eigenstates of new Hamiltonian?

Yes, that's what you have here.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top