What is the meaning of a zero of a polynomial and how is it determined?

  • Thread starter Thread starter duki
  • Start date Start date
  • Tags Tags
    Degree
AI Thread Summary
The discussion focuses on understanding the Remainder Theorem and its application to polynomials. Participants clarify that determining if a number is a zero of a polynomial involves checking if the remainder is zero when the polynomial is evaluated at that number. The conversation also highlights confusion regarding the calculations and the use of synthetic division versus long division to find remainders and quotients. Additionally, there is a discussion about ensuring the correct polynomial is used in calculations. Overall, the thread emphasizes the importance of accurately applying the Remainder Theorem to solve polynomial problems.
duki
Messages
264
Reaction score
0

Homework Statement



Determine the remainder using the remainder theorem
P(x) = 2x^3 + 3x^2 + 4x - 10; D(x) = x + 1

Homework Equations



Remainder Theorem

The Attempt at a Solution


x = -1
P(x) = -2 + 3 - 4 - 10
R -13Can you have a negative remainder?The next question says:
Decide whether or not the number is a zero of the polynomial.

Is that just another way of saying find the remainder?
 
Last edited:
Physics news on Phys.org
Sure you can have a negative remainder. Is the 'number' you are referring to -1? If so, IS it a root?
 
Oh ok, so -13 is the right answer to that one?


No, the next question is referring to a different polynomial, though the question was stated different. Can I use the remainder theorem again, or is it asking me to do something different?
 
What's the remainder of x-r if r is a root? And if you don't believe -13 is the remainder - check it with a long division.
 
Last edited:
The remainder theorem which you mention but don't cite (that would have been a good idea) says that if P(x) is divided by (x-a) then the remainder is P(a). That's true because P(x)/(x-a)= Q(x)+ remainder r is the same as saying P(x)= (x-a)Q(x)+ r. What happens when you set x= a?
 
I'm lost =/

My teacher didn't go over the theorem, he just told us how to use the f(x) = blah

Sorry I didn't site it.

I'll work it out in long division to see if I got the right answer, but I'm thinking I did since you can have a - remainder.

Now I'm not sure what to do about the question that asks if a certain number is a zero of the polynomial... is that the same as saying find the remainder?
 
Look at what Halls said. Dividing a polynomial P(x) by (x-a) and getting a remainder r and a quotient Q(x) means you can write the polynomial P(x)=Q(x)*(x-a)+r, right? Make sense? Just the same as division by numbers? Putting x=a in that gives:

P(a)=r

since a-a=0. That is the Remainder theorem. So to see if r=0 (which is the same as saying that a is a root, yes?), you can either put 'a' into the polynomial and see if you get zero or you can divide the polynomial by (x-a) and see if the remainder is zero. Same thing. Do actually try out the long division to prove it to yourself.
 
What is a?

When i divided it with long division I got -9 =/
But when i used synthetic division i got -13 again...

The question about finding a zero is

P(x) = -x^4 + 9x^2 - 9x + 27; 3
So I did used
P(3) = -(3)^4 + 9(3)^2 - 9(3) + 27 = 0
so yes it is a zero?

There is yet another problem that says find the quotient and remainder of the following problems and whatnot... i can get the remainder but how do i get the quotient?
Is that where I subtract a root from the equation since I just took one out?
If so here is what I did:

Problem: (3x^5 + 4x^4 + 2x^2 - 1) / (x + 2)

Solution (using synth div.)

3 -2 4 -6 R11
so
3x^3 - 2x^2 + 4x - 6 R11 ??
 
Last edited:
duki said:
1. Homework Statement

Determine the remainder using the remainder theorem
P(x) = 2x^3 + 3x^2 + 4x - 10; D(x) = x + 1

2. Homework Equations

Remainder Theorem

3. The Attempt at a Solution
x = -1
P(x) = -2 + 3 - 4 - 10
R -13
In the statement of the problem you said the the polynomial was 2x3+ 3x2+ 4x- 10. Here you use "-2 + 3 - 4 -10" which corresponds to -2x3+ 3x2- 4x- 10. Which is it?

The question about finding a zero is

P(x) = -x^4 + 9x^2 - 9x + 27; 3
So I did used
P(3) = -(3)^4 + 9(3)^2 - 9(3) + 27 = 0
so yes it is a zero?
? If you were asked to find a zero, where did you get "3" from? If you were asked to determine whether or not 3 is a zero then it's just a matter of understanding what a "zero" of a polynomial is.

There is yet another problem that says find the quotient and remainder of the following problems and whatnot... i can get the remainder but how do i get the quotient?
Is that where I subtract a root from the equation since I just took one out?
If so here is what I did:

Problem: (3x^5 + 4x^4 + 2x^2 - 1) / (x + 2)

Solution (using synth div.)

3 -2 4 -6 R11
so
3x^3 - 2x^2 + 4x - 6 R11 ??
Are you saying you do not know the meaning of the word "quotient"? If you were to divide 1233 by 5 what would be the quotient and what would be the remainder?
 
  • #10
In the statement of the problem you said the the polynomial was 2x3+ 3x2+ 4x- 10. Here you use "-2 + 3 - 4 -10" which corresponds to -2x3+ 3x2- 4x- 10. Which is it?

It's the one stated in the problem, but i did (-1)^3 * 2.

? If you were asked to find a zero, where did you get "3" from? If you were asked to determine whether or not 3 is a zero then it's just a matter of understanding what a "zero" of a polynomial is.

Yes, I needed to determine if 3 was a zero.

Are you saying you do not know the meaning of the word "quotient"? If you were to divide 1233 by 5 what would be the quotient and what would be the remainder?

I actually typed the problem wrong... but it's ok I have it right now.

thanks for the help.
 
Back
Top