mathlover1
- 8
- 0
For all positive real numbers x,y prove that:
\frac{1}{1+\sqrt{x}}+\frac{1}{1+\sqrt{y}} \geq \frac{2\sqrt{2}}{1+\sqrt{2}}
\frac{1}{1+\sqrt{x}}+\frac{1}{1+\sqrt{y}} \geq \frac{2\sqrt{2}}{1+\sqrt{2}}