What is the Negation of P v Q -> R?

  • Thread starter Thread starter chuy52506
  • Start date Start date
chuy52506
Messages
77
Reaction score
0

Homework Statement


P v Q -> R


Homework Equations


Negation of the statement


The Attempt at a Solution


P v Q ^(and) ~(not)R
 
Physics news on Phys.org
let S = (P and Q )

then negating
S -> R

gives
S and (~R)

so you have
(P or Q) and (~R)
 
lanedance said:
let S = (P and Q )
One thing needs an adjustment.
Let S = (P or Q)
In the OP, the statement was P v Q -> R, which is (P OR Q) ==> R

lanedance said:
then negating
S -> R

gives
S and (~R)

so you have
(P or Q) and (~R)
 
Cheers, mis-editing ;)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top