What is the origin of the factor 3?

AI Thread Summary
The discussion centers on the origin of the factor 3 in the three-phonon interactions Hamiltonian. The Hamiltonian is expressed in terms of symmetric coefficients \(M_{ijk}\) and involves the creation and annihilation operators for phonons. The Heisenberg equation of motion is derived, leading to an expression that includes the factor 3, which raises questions about its origin. A key point noted is the inappropriate use of the index \(i\) as a summation variable when deriving the equation of motion for a fixed \(b_i\). This highlights the importance of careful index management in quantum mechanics calculations.
July Zou
Messages
1
Reaction score
0
Homework Statement
below
Relevant Equations
below
We have the three-phonon interactions Hamiltonian $$H_{\mathrm{ph}-\mathrm{ph}}=\sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right)\left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right).$$
We will not need the explicit expression for the $$M_{ijk}$$
here, but only note that it is symmetric in all its indices and fulfill $$M_{i j k}=M_{-i-j-k}^*$$ and further assume $$M_{-iij}=0$$
To get the Heisenberg equation of motion
$$ i\hbar \frac{d}{d t} b_i =\left[b_i, H_{ph-ph} \right]$$, we have derived
\begin{equation}
\begin{aligned}
\left[b_i, H_{ph-ph} \right]&=\Big[ b_i, \sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right) \left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right) \Big]\\
&= \sum_{ijk} M_{ijk} \Big(\left[b_i, b_{-i}^\dagger + b_i\right]\left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right) \\
&\quad + \left(b_{-i}^\dagger + b_i\right)\left[b_i, b_{-j}^\dagger + b_j\right]\left(b_{-k}^\dagger + b_k\right) \\
&\quad + \left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right)\left[b_i, b_{-k}^\dagger + b_k\right] \Big)\\
&= \sum_{ijk} M_{ijk} \Big(\delta_{i,-i} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)\\
&\quad +\delta_{i,-j} \left(b_{-i}^\dagger + b_i\right)\left(b_{-k}^\dagger + b_k\right)+ \delta_{i,-k}\left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right) \Big)\\
&=\sum_{jk} \Big( M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)\\
&\quad +\underbrace{M_{-jjk}}_{0} \left(b_{-i}^\dagger + b_i\right)\left(b_{-k}^\dagger + b_k\right)+ \underbrace{M_{-kjk}}_{0}\left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right) \Big)\\
&=\sum_{jk} M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right).
\end{aligned}
\end{equation}

However, the result is $$3\sum_{jk} M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)$$, where is the factor 3 from? Should it be $$\sum_{ijk}M_{ijk}\delta_{i,-i}=3\sum_{jk}M_{-ijk}?$$
 
Last edited:
Physics news on Phys.org
July Zou said:
$$
\begin{aligned}
\left[b_i, H_{ph-ph} \right]&=\Big[ b_i, \sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right) \left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right) \Big]\\

\end{aligned}
$$
You should not use ##i## as a summation index if you are getting the equation of motion for ##b_i## with some fixed ##i##.
 
  • Like
Likes vanhees71 and topsquark
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top