What is the origin of the factor 3?

Click For Summary
The discussion centers on the origin of the factor 3 in the three-phonon interactions Hamiltonian. The Hamiltonian is expressed in terms of symmetric coefficients \(M_{ijk}\) and involves the creation and annihilation operators for phonons. The Heisenberg equation of motion is derived, leading to an expression that includes the factor 3, which raises questions about its origin. A key point noted is the inappropriate use of the index \(i\) as a summation variable when deriving the equation of motion for a fixed \(b_i\). This highlights the importance of careful index management in quantum mechanics calculations.
July Zou
Messages
1
Reaction score
0
Homework Statement
below
Relevant Equations
below
We have the three-phonon interactions Hamiltonian $$H_{\mathrm{ph}-\mathrm{ph}}=\sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right)\left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right).$$
We will not need the explicit expression for the $$M_{ijk}$$
here, but only note that it is symmetric in all its indices and fulfill $$M_{i j k}=M_{-i-j-k}^*$$ and further assume $$M_{-iij}=0$$
To get the Heisenberg equation of motion
$$ i\hbar \frac{d}{d t} b_i =\left[b_i, H_{ph-ph} \right]$$, we have derived
\begin{equation}
\begin{aligned}
\left[b_i, H_{ph-ph} \right]&=\Big[ b_i, \sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right) \left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right) \Big]\\
&= \sum_{ijk} M_{ijk} \Big(\left[b_i, b_{-i}^\dagger + b_i\right]\left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right) \\
&\quad + \left(b_{-i}^\dagger + b_i\right)\left[b_i, b_{-j}^\dagger + b_j\right]\left(b_{-k}^\dagger + b_k\right) \\
&\quad + \left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right)\left[b_i, b_{-k}^\dagger + b_k\right] \Big)\\
&= \sum_{ijk} M_{ijk} \Big(\delta_{i,-i} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)\\
&\quad +\delta_{i,-j} \left(b_{-i}^\dagger + b_i\right)\left(b_{-k}^\dagger + b_k\right)+ \delta_{i,-k}\left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right) \Big)\\
&=\sum_{jk} \Big( M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)\\
&\quad +\underbrace{M_{-jjk}}_{0} \left(b_{-i}^\dagger + b_i\right)\left(b_{-k}^\dagger + b_k\right)+ \underbrace{M_{-kjk}}_{0}\left(b_{-i}^\dagger + b_i\right)\left(b_{-j}^\dagger + b_j\right) \Big)\\
&=\sum_{jk} M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right).
\end{aligned}
\end{equation}

However, the result is $$3\sum_{jk} M_{-ijk} \left(b_{-j}^\dagger + b_j\right)\left(b_{-k}^\dagger + b_k\right)$$, where is the factor 3 from? Should it be $$\sum_{ijk}M_{ijk}\delta_{i,-i}=3\sum_{jk}M_{-ijk}?$$
 
Last edited:
Physics news on Phys.org
July Zou said:
$$
\begin{aligned}
\left[b_i, H_{ph-ph} \right]&=\Big[ b_i, \sum_{i j k} M_{i j k}\left(b_{-i}^{\dagger}+b_i\right) \left(b_{-j}^{\dagger}+b_j\right)\left(b_{-k}^{\dagger}+b_k\right) \Big]\\

\end{aligned}
$$
You should not use ##i## as a summation index if you are getting the equation of motion for ##b_i## with some fixed ##i##.
 
  • Like
Likes vanhees71 and topsquark
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...