This question is similar to asking what is a photon? Photons and electrons and other elementary particles are not actually little billiard balls that are flying around high speeds. They are both quantum excitations of their respective fields.
The entire universe is filled with a photon field, and it's mostly empty. You can think of it as an empty EM field as well. At every point in space there is a quantum harmonic oscillator for each possible spatial frequency, and thing about quantum harmonic oscillators is that only allowed energy levels come in steps of hw. The minimum energy of the oscillator is 3/2hw in 3 dimensions, and then it goes up to 5/2hw, then 7/2 hw, etc. One step above the zero-point level is considered one photon at that spatial frequency. The photon could have a range of frequencies, and be localized in some way, or be more spread out and less localized.
Just think of it of a field as an infinite set of harmonic oscillators at every point in space, and think of the particles as quantum vibrations of this field.
In a similar way, there is an electron field that fills of space with a zero-point energy, and it has certain linearly quantized energy levels above the zero level that indicate the number of electrons. This explains why every electron has exactly the same mass, charge, spin, and g-factor. Saying an electron is the same thing as saying a quantum vibration of the electron field, but the latter is too wordy. The electron vibration can be localized, as in a vibration around an atom, or more spread out like a free particle, or an electron in a double slit experiment.
The big difference between the electron field and the photon field is that with electron vibrations, they can't stack directly on top each other. This is described as the Pauli Exclusion rule. The electron field is a fermion field, described by the Dirac equation. Two electron vibrations can be in almost the same state very close to each other, but they can never occupy the same exact state.
I like to visual all quantum particles, whether they are photons or electrons, as 3 dimensional fuzz balls, and those fuzz balls oscillate and move around and sometimes disappear according the probabilistic laws of QFT. It's the sudden collapse of the fuzz balls that's most shocking to me, (wavefunction collapse is mysterious).