kemiisto
- 2
- 0
Homework Statement
Find the operator for position x if the operator for momentum p is taken to be \left(\hbar/2m\right)^{1/2}\left(A + B\right), with \left[A,B\right] = 1 and all other commutators zero.
Homework Equations
Canonical commutation relation
\left [ \hat{ x }, \hat{ p } \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar
The Attempt at a Solution
Using c = \left(\hbar/2m\right)^{1/2}
\hat{x} \hat{p} f - \hat{p} \hat{x} f = i \hbar
\hat{x} c \left(\hat{A} + \hat{B}\right) f - c \left(\hat{A} + \hat{B}\right) \hat{x} f = i \hbar
c \hat{x} \left(\hat{A} + \hat{B}\right) f - c \left(\hat{A} + \hat{B}\right) \hat{x} f = i \hbar
\hat{x} \hat{A} f + \hat{x} \hat{B} f - \hat{A} \hat{x} f - \hat{B} \hat{x} f = i \hbar / c
\hat{x} \hat{A} f - c \hat{A} \hat{x} f + \hat{x} \hat{B} f - \hat{B} \hat{x} f = i \hbar / c
\left [ \hat{x}, \hat{A} \right ] + \left [ \hat{x}, \hat{B} \right ] = i \hbar / c
"all other commutators zero"
0 + 0 = i \hbar / c

Problem 1.2 from http://www.oup.com/uk/orc/bin/9780199274987/" .
Last edited by a moderator: