What is the proof for Byron's Conjecture? Define Znx and prove its properties.

  • Thread starter Thread starter koukou
  • Start date Start date
  • Tags Tags
    Proof
koukou
Messages
5
Reaction score
0
prove Byron's Conjecture. Define the set
Znx={k∈Zn but not including zero :gcd(k; n) = 1}
(a) Prove that Znx is a group under multiplication (mod n).
(b) Prove that an element a∈Zn is invertible in Zn (with respect to multiplication (mod n)) if and only if a∈Znx

Znx x should be above n . i don't know how to type
 
Physics news on Phys.org
Use the fact that you can write out ak + bn = 1 for some integers a,b to show the elements are invertible.
 
LaTeX: \mathbb{Z}_n^{\times} ... use the "Quote" button to see it.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top