Warr
- 119
- 0
I am trying to show that
\frac{d}{dt}<x^2>=\frac{1}{m}(<xp>+<px>)....(1)
With the wavefunction \Psi being both normalized to unity and square integrable
Here is what I tried...
<xp> = \int_{-\infty}^{\infty}{\Psi}^*xp{\Psi}dx
<px> = \int_{-\infty}^{\infty}{\Psi}^*px{\Psi}dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*\frac{\partial}{{\partial}x}(x{\Psi})dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*({\Psi}+x\frac{{\partial}{\Psi}}{{\partial}x})dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*{\Psi}dx+\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*x\frac{{\partial}{\Psi}}{{\partial}x}dx
from here the first part in the addition reduces to \frac{\hbar}{i} since the integral reduces to 1 for a normalized wavefunction. The second part is just the integral for <xp>, so I'll just reduce it to that for now...
<px>=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*{\Psi}dx+\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*x\frac{{\partial}{\Psi}}{{\partial}x}dx =\frac{\hbar}{i}+<xp>
so now we have
\frac{1}{m}(<xp>+<px>) = \frac{\hbar}{im}+\frac{2}{m}<xp>...(2)
Looking at the left side of of equation (1) now
\frac{\partial}{{\partial}t}<x^2>=\int_{-\infty}^{\infty}\frac{{\partial}}{{\partial}t}(\Psi^*x^2{\Psi})dx=\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx+\int_{-\infty}^{\infty}\Psi^*\frac{d}{dt}(x^2){\Psi}dx
now.. I don't know if I can even do this: \frac{d}{dt}x^2=2x\frac{dx}{dt}=\frac{2}{m}xp
assuming I could, that reduces the second integral to \int_{-\infty}^{\infty}\Psi^*\frac{d}{dt}(x^2){\Psi}dx=\frac{2}{m}\int_{-\infty}^{\infty}\Psi^*xp{\Psi}dx=\frac{2}{m}<xp>
subbing into the LS and RS of equation (1) gives
\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx + \frac{2}{m}<xp> = \frac{\hbar}{im} + \frac{2}{m}<xp>
the same terms on each side cancel leaving me to show
\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx = \frac{\hbar}{im}
The inner derivative of this equation can be expanded to
\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})=\Psi^*\frac{{\partial\Psi}}{{\partial}t}+\frac{{\partial}\Psi^*}{{\partial}t}\Psi
From Shroedinger's eq'n we know
\frac{{\partial}\Psi}{{\partial}t}=\frac{i\hbar}{2m}\frac{{\partial}^2\Psi}{{\partial}x^2}-\frac{i}{\hbar}V\Psi
\frac{{\partial}\Psi^*}{{\partial}t}=-(\frac{i\hbar}{2m}\frac{{\partial}^2\Psi^*}{{\partial}x^2}-\frac{i}{\hbar}V\Psi^*)
we then find that
\Psi^*\frac{{\partial\Psi}}{{\partial}t}+\frac{{\partial}\Psi^*}{{\partial}t}\Psi=\frac{i\hbar}{2m}(\Psi^*\frac{{\partial^2\Psi}}{{\partial}x^2}-\frac{{\partial^2}\Psi^*}{{\partial}x^2}\Psi)=\frac{\partial}{{\partial}x}(\frac{i\hbar}{2m}(\Psi^*\frac{{\partial\Psi}}{{\partial}x}-\frac{{\partial}\Psi^*}{{\partial}x}\Psi))
From here I don't know where I'm going..seems like kind of a dead end..
\frac{d}{dt}<x^2>=\frac{1}{m}(<xp>+<px>)....(1)
With the wavefunction \Psi being both normalized to unity and square integrable
Here is what I tried...
<xp> = \int_{-\infty}^{\infty}{\Psi}^*xp{\Psi}dx
<px> = \int_{-\infty}^{\infty}{\Psi}^*px{\Psi}dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*\frac{\partial}{{\partial}x}(x{\Psi})dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*({\Psi}+x\frac{{\partial}{\Psi}}{{\partial}x})dx=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*{\Psi}dx+\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*x\frac{{\partial}{\Psi}}{{\partial}x}dx
from here the first part in the addition reduces to \frac{\hbar}{i} since the integral reduces to 1 for a normalized wavefunction. The second part is just the integral for <xp>, so I'll just reduce it to that for now...
<px>=\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*{\Psi}dx+\frac{\hbar}{i}\int_{-\infty}^{\infty}{\Psi}^*x\frac{{\partial}{\Psi}}{{\partial}x}dx =\frac{\hbar}{i}+<xp>
so now we have
\frac{1}{m}(<xp>+<px>) = \frac{\hbar}{im}+\frac{2}{m}<xp>...(2)
Looking at the left side of of equation (1) now
\frac{\partial}{{\partial}t}<x^2>=\int_{-\infty}^{\infty}\frac{{\partial}}{{\partial}t}(\Psi^*x^2{\Psi})dx=\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx+\int_{-\infty}^{\infty}\Psi^*\frac{d}{dt}(x^2){\Psi}dx
now.. I don't know if I can even do this: \frac{d}{dt}x^2=2x\frac{dx}{dt}=\frac{2}{m}xp
assuming I could, that reduces the second integral to \int_{-\infty}^{\infty}\Psi^*\frac{d}{dt}(x^2){\Psi}dx=\frac{2}{m}\int_{-\infty}^{\infty}\Psi^*xp{\Psi}dx=\frac{2}{m}<xp>
subbing into the LS and RS of equation (1) gives
\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx + \frac{2}{m}<xp> = \frac{\hbar}{im} + \frac{2}{m}<xp>
the same terms on each side cancel leaving me to show
\int_{-\infty}^{\infty}x^2\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})dx = \frac{\hbar}{im}
The inner derivative of this equation can be expanded to
\frac{{\partial}}{{\partial}t}(\Psi^*{\Psi})=\Psi^*\frac{{\partial\Psi}}{{\partial}t}+\frac{{\partial}\Psi^*}{{\partial}t}\Psi
From Shroedinger's eq'n we know
\frac{{\partial}\Psi}{{\partial}t}=\frac{i\hbar}{2m}\frac{{\partial}^2\Psi}{{\partial}x^2}-\frac{i}{\hbar}V\Psi
\frac{{\partial}\Psi^*}{{\partial}t}=-(\frac{i\hbar}{2m}\frac{{\partial}^2\Psi^*}{{\partial}x^2}-\frac{i}{\hbar}V\Psi^*)
we then find that
\Psi^*\frac{{\partial\Psi}}{{\partial}t}+\frac{{\partial}\Psi^*}{{\partial}t}\Psi=\frac{i\hbar}{2m}(\Psi^*\frac{{\partial^2\Psi}}{{\partial}x^2}-\frac{{\partial^2}\Psi^*}{{\partial}x^2}\Psi)=\frac{\partial}{{\partial}x}(\frac{i\hbar}{2m}(\Psi^*\frac{{\partial\Psi}}{{\partial}x}-\frac{{\partial}\Psi^*}{{\partial}x}\Psi))
From here I don't know where I'm going..seems like kind of a dead end..