Maths Lover said:
Theorem :
if S ={ v1 , ... , vn} spans the V.Space V
, L={w1 , ... , wm} is set of linear independent vectors in V
then , n is bigger than or equal to mHow can we prove this ?
_____________
I read this theorem as a important note but the proof was ommited
Chiro, I think the results you suggest to be used are consequences of this theorem.
I know of two different proofs. One is based upon the thereom which says that a linear homogeneous equation system with more unknowns than equations has nontrivial solutions.
Another proof goes like this:
For each k (0<=k<=m), let Sk = {w1, w2, ... , wk, v1, v2, ... , vn}
Each Sk spans W, since S does.
Now, for each k (0<=k<=m), let Tk be the result when we remove from Sk all vectors which are linear combinations of the previous vectors in Sk. Then, each Tk is linearly independent. Since L is linearly independent, no wi will ever be removed when we form Tk, so w1, w2, ... wk in Tk for all k (0<=k<=m). But when we form T(k+1) (0<=k<m), we must remove at least all vectors from S(k+1) which we remove when we form Tk from Sk. But this is not enough, for if we only remove these vectors from S(k+1) to form T(k+1), w(k+1) would still be a linear combination of the other vectors in T(k+1), i.e. of the vectors in Tk, which contradicts that T(k+1) is linearly independent. Thus, we must remove at least one vector more to obtain T(k+1).
It follows that for each k (1<=k<=m), we must remove at least k vectors from Sk to form Tk, but none of the wi:s will be removed. In particular Tm contains all the vectors w1, w2, ... wm, and still it contains at least m vectors fewer than Sm, which contains m+n vectors. It follows that m<=(m+n)-m=m, that is: m<=n,