What is the relationship between eigenvalues and eigenvectors in 3x3 matrices?

hellomrrobot
Messages
10
Reaction score
0
What does it mean when it says eigenvalues of Matrix (3x3) A are the square roots of the eigenvalues of Matrix (3x3) B and the eigenvectors are the same for A and B?
 
Physics news on Phys.org
Seems simple to me.

You have two 3x3 matrices. Their eigenvectors are the same. The eigenvalues of one are the square roots of the eigenvalues of the other.
 
Dr. Courtney said:
Seems simple to me.

You have two 3x3 matrices. Their eigenvectors are the same. The eigenvalues of one are the square roots of the eigenvalues of the other.
Yes, but what does that look like? It has been a while since I have even used the word eigenvalue/vector...
 
Dr. Courtney said:
You have two 3x3 matrices. Their eigenvectors are the same. The eigenvalues of one are the square roots of the eigenvalues of the other.
So your question is really "what are eigenvalues and eigenvectors?". An "eigenvector for matrix A, corresponding to eigenvalue \lamba, is a vector, v, such that Av= \lambda v".

Suppose A= \begin{bmatrix}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6\end{bmatrix}. Then it is easy to see that 3 is an eigenvalue of A with eigenvector any multiple of (1, 0, 0), 2 is an eigenvalue of A with eigenvector any multiple of (0, 1, 0), and 6 is an eigenvalue with eigenvector any multiple of (0, 0, 1).

Similarly, let B= \begin{bmatrix}9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 36\end{bmatrix}. Now, 9, 4, and 36 are eigenvalues of B with the same eigenvectors.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top