What is the relationship between subspaces V and W if V is contained in W?

leilei
Messages
8
Reaction score
0
subspaces and dimension!

Consider two subspaces V and W of R^n ,where V is contained in W.
Why is dim(V)<= dim(W)...?
"<=" less than or equal to
 
Physics news on Phys.org
the only way you get dim(V) = dim(W) is if V=W, if V is strictly contained in W then, then there must be some vector in W that is not in V, let this be w. Now let (v_1,v_2,...v_r) be a basis of V (now I assumed dim(W)=r). Clearly v_1,v_2,...v_r are in W because it containes V, and because w is not in V it must be independent of v_1,v_2,...v_r, so
(v_1,v_2,...v_r,w) is a linearly independent set in W, so dim(W) is at least r+1 (could be more).
 
Just because I can't resist "putting my oar in", I'll echo mrandersdk: If V is a subspace of W, then any vector any V is also a vector in W. Any basis for W spans V and so any basis for V cannot be larger than a basis for W. Since the dimension of a space is the size of a basis, ...

By the way, do you see why saying "subspace V is a subset of subspace W" (they are both subspaces of some vector space U) is the same as saying "V is a subspace of W"?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top