If you have n functions, fi(x), and n numbers, ai, such that a1f1(x)+ ...+ anfn(x)= 0 for all x, then you can make that into n equations for the ais by taking n derivatives (to get n equations) and taking x= 0 (or any other fixed number). The Wronskian, in that case, evaluated at x= 0 or whatever number, is simply the coefficient matrix. As long as that matrix does not have 0 determinant, you could find the unique solution multiplying by its inverse matrix. Obviously, ai= 0 for all i is a solution. If the determinant of the Wronskian is not 0, it is the only solution and so the functions are independent. If the determinant is 0, then there is no unique solution. (In general, if the determinant of the coefficient matrix for n equations is 0, either there is no solution or there are an infinite number of solutions. In this case, ai= 0 is an obvious solution so there must be an infinite number of solutions.)