What is the residue of f(z) = e^(-2/z^2) using a laurent series?

  • Thread starter Thread starter cragar
  • Start date Start date
  • Tags Tags
    Residue Series
cragar
Messages
2,546
Reaction score
3

Homework Statement


Use a laurent series to find the indicated residue
f(z)=e^{\frac{-2}{z^2}}

Homework Equations

The Attempt at a Solution


So I expand the series as
follows 1-\frac{2}{z^2}+\frac{2}{z^4} ...
my book says the residue is 0 , is this because there is no residue term ?
the a_{-1} term
 
Last edited:
Physics news on Phys.org
Yes
 
ok just wanted to make sure
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top