What is the significance of adding a constant in augmented coefficient vectors?

Square1
Messages
143
Reaction score
1
What exactly does throwing the constant into your normal tuplet represent vs. a normal vector without the constant? (coefficient vectors = normal vector right?)

My notes don't provide an explanation for this. I can visualize what parallel normal vectors look like, but then they talk about parallel or not parallel augmented coefficent vectors which is where I get lost.

Thanks.
 
Physics news on Phys.org
Ok cancel that. Misread a bunch of stuff.
 
a simple example:

the vectors (2,1) and (4,2) are parallel. suppose they actually represent coefficients in a set of linear equations:

2x + y = 0
4x + 2y = 0

the augmented vectors (2,1,0), (4,2,0) are also parallel. this means they represent "the same equation" (just scaled, in this case, by a factor of 2).

if we have:

2x + y = 0
4x + 2y = 1

the augmented vectors (2,1,0) and (4,2,1) are no longer parallel, which means the same pairs of (x,y) no longer satisfy both (in this case, there is no such pair at all).

adding an extra coordinate increases the dimension of "the space we're in" by 1. in 2 dimensions (the plane), if two lines are not parallel, they have to intersect. in 3 dimensions, two lines can be "not parallel" and still not intersect.

if two augmented vectors are not parallel, it means they represent two different equations (two different constraints on the solutions space). if two augmented vectors are parallel, one of them is redundant (this is the notion we seek to capture with the idea of linear independence, when we are considering two or more equations).

this is the "row-based" way of looking at things (focused on the solutions). the "column-based" way of looking at things focuses on the "images" (what happens to the elements of the solution space). in the equation:

Ax = b

the columns (of A) determine which b's we can get, the rows (of A or A|b) determine which x's we can use.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top