What is the solution for θ in the equation y - xtanθ = z/cosθ?

  • Thread starter Thread starter ohaiyo88
  • Start date Start date
  • Tags Tags
    Angle
ohaiyo88
Messages
12
Reaction score
0
y - xtanθ = z/cosθ

Find θ in terms of x,y,z
equation seems so simple, but can't do it
 
Physics news on Phys.org
What did you try?ehild
 
cant do it. pls help. it's urgent
 
You can use the relation between cos(θ) and than(θ):
1/cos(θ)=sqrt(1+tan2(θ)).


ehild
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top