I What is the solution to the heat equation with a constant added?

morenopo2012
Messages
7
Reaction score
0
I have seen how to solve the heat equation:

$$ \frac{ \partial^2 u(x,t) }{\partial x^2} = k^2 \frac{ \partial u(x,t) }{\partial t} $$

With boundary conditions.

I use separation variables to find the result, but i don't know how to solve the equation plus a constant:

$$ \frac{ \partial^2 u(x,t) }{\partial x^2} = k^2 \frac{ \partial u(x,t) }{\partial t} + 2 $$How can i solve the second PDE?
 
Physics news on Phys.org
morenopo2012 said:
I have seen how to solve the heat equation:

$$ \frac{ \partial^2 u(x,t) }{\partial x^2} = k^2 \frac{ \partial u(x,t) }{\partial t} $$

With boundary conditions.

I use separation variables to find the result, but i don't know how to solve the equation plus a constant:

$$ \frac{ \partial^2 u(x,t) }{\partial x^2} = k^2 \frac{ \partial u(x,t) }{\partial t} + 2 $$How can i solve the second PDE?
Write $$u=U+V$$ where V satisfies the equation:
$$\frac{d^2V}{dx^2}=2$$
subject to the boundary conditions on u. See what that gives you for U.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top