AngeSurTerre
- 25
- 4
Hello, I have a Hamiltonian that describes a particle in a rotating cylindrical container at angular frequency ω. In the lab frame the Hamiltonian is time-dependent and takes the form (using cylindrical coordinates)
\mathcal H_o=\frac{\vec P^2}{2m}+V(r,\theta-\omega t,z),
where V(r,\theta,z) is the potential due to the container. In the frame of the rotating container, the Hamiltonian is independent of time and takes the form
\mathcal H=\frac{\vec p^2}{2m}-\vec\omega\cdot\vec{\mathcal L}+V(r,\theta,z),
where \vec{\mathcal L}=\vec r\times\vec P is the angular momentum operator.
I'm looking for a unitary operator \mathcal U such that \mathcal H=\mathcal U^\dagger\mathcal H_o\mathcal U. The operator e^{-i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t} does the job for the potential,
e^{i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t}V(r,\theta-\omega t,z)e^{-i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t}=V(r,\theta,z),
but it leaves the kinetic term unchanged. So what is the unitary operator that adds a shift of \vec\omega\cdot\vec{\mathcal L} to the kinetic term?
\mathcal H_o=\frac{\vec P^2}{2m}+V(r,\theta-\omega t,z),
where V(r,\theta,z) is the potential due to the container. In the frame of the rotating container, the Hamiltonian is independent of time and takes the form
\mathcal H=\frac{\vec p^2}{2m}-\vec\omega\cdot\vec{\mathcal L}+V(r,\theta,z),
where \vec{\mathcal L}=\vec r\times\vec P is the angular momentum operator.
I'm looking for a unitary operator \mathcal U such that \mathcal H=\mathcal U^\dagger\mathcal H_o\mathcal U. The operator e^{-i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t} does the job for the potential,
e^{i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t}V(r,\theta-\omega t,z)e^{-i\frac{\vec\omega\cdot\vec{\mathcal L}}{\hbar}t}=V(r,\theta,z),
but it leaves the kinetic term unchanged. So what is the unitary operator that adds a shift of \vec\omega\cdot\vec{\mathcal L} to the kinetic term?