Ha! I see what you are saying. But the way the total of an infinite sum is defined, you must look at each partial sum after adding one term at a time and those partial sums must eventually converge to a single total number. The series of partial sums of my final summation are 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0 ... So the partial sums are not converging to a single number and never will.
There are many ways that your series can be manipulated to give wild swings in the partial sums. That is because it has an infinite total of positive numbers and an infinite total of negative numbers that you can intersperse in the summation to make the partial sums keep changing any way you want.
That is not always true. If the sum of all the positive numbers is finite and the sum of all the negative numbers is finite, there will be a single number that the partial sums converge to, no matter how you rearrange them. That is because you have a limited amount that you can manipulate the series to swing the partial sums around. When your plus total or minus total starts to run out, the partial sums eventually converge to the answer.