What Is the Upper Bound on White Balls with Given Certainty?

  • Thread starter Thread starter kenewbie
  • Start date Start date
  • Tags Tags
    Bound Upper bound
kenewbie
Messages
238
Reaction score
0
Say I have a container with room for B balls. I know that there are black and white balls but I don't know the ratio between them.

Say I pick P balls, and R% are black. How can I use this information to establish an upper bound on the number of white balls, with C% certainty?

To give a specific example:

I have 1000 Balls, I pick 10 and they are all black. If I want to be 98% certain, what is the upper bound on the number of white balls?

I don't know any statistics beyond simple elementary probabilities, so I have no idea how to approach this. Some help with setting up an equation that I can use to solve these kinds of problems would be much appreciated.

Edit:

I've been thinking about it and I believe I can get some of the way towards an answer. For any given number of white balls, I can get the probability for that particular setup. Let's say that there was 100 white balls; the probability of me getting 10 black would then be

\frac{\binom{900}{10} \binom{100}{0}}{\binom{1000}{10}}

I guess I could start at the probability of 990 white balls, add that together with the probability of 989 white balls, and keep going until I get to 98%, but there must be a better solution? This summation solution works for this example, but it gets pretty unfeasible if I have something like 10^31 balls.

k
 
Last edited:
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top