Is the Hollow I Symbol the Identity Matrix?

  • Thread starter Thread starter misterau
  • Start date Start date
  • Tags Tags
    Symbol
misterau
Messages
20
Reaction score
0

Homework Statement


http://img40.imageshack.us/img40/6421/57065635.jpg

The Attempt at a Solution


I just what to know what the hollow I symbol is?
Is it just
1 0 0
0 1 0
0 0 1
Thank you!
 
Last edited by a moderator:
Physics news on Phys.org
Yes, it is the identity matrix.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top