What Pressure Does a 0.5" ID Tube Have on a 39"x75" Area?

AI Thread Summary
The pressure exerted by a 180-pound weight on a 39"x75" area calculates to approximately 0.0615 psi using the formula P=F/A. If the box is flexible, this pressure is accurate as the weight is supported by the air inside. However, if the box has any stiffness, much of the weight will be supported by the sides, resulting in a negligible change in pressure. The diameter of the tube does not affect the pressure in this scenario. Ultimately, the structural properties of the box play a crucial role in determining how the weight is distributed.
futbalfantic
Messages
2
Reaction score
0
I have a 39"x75"x0.75" area that has 180lbs resting ontop of it. According to P=F/A or P=180lbs/2,925 I^2 therefore P=0.0615... If a tube comes off of the side of the "box" that is 0.5" inside diameter would this have a pressure of 0.0615 or would I find this pressure some other way?
 
Physics news on Phys.org
If the sides of the box are completely flexible (for example the "box" is just a sealed bag full of air) , then yes. This is how car tires support the weight of the car.

If the box has any stiffness, then some of the 180 lbf will be supported by the forces in the sides. If the box is stiff enough so it doesn't bend much, most likely nearly all the 180lbf would be suppored by the sides, and the change in pressure would be very small.

The diameter of the tube is irrelevant.
 
Yeah I was thinking of a sealed bag full of air.
 
comparing a flat solar panel of area 2π r² and a hemisphere of the same area, the hemispherical solar panel would only occupy the area π r² of while the flat panel would occupy an entire 2π r² of land. wouldn't the hemispherical version have the same area of panel exposed to the sun, occupy less land space and can therefore increase the number of panels one land can have fitted? this would increase the power output proportionally as well. when I searched it up I wasn't satisfied with...
Back
Top