MHB What Property Connects the Steps in a Geometric Series Calculation?

  • Thread starter Thread starter nacho-man
  • Start date Start date
AI Thread Summary
The discussion centers on understanding the properties of geometric series, specifically how to derive the sum formula for a geometric series. The user seeks clarification on the transition between two steps in a calculation involving the geometric sum, which is represented as S_n = a(1 - r^n) / (1 - r). They express a desire to apply this rule to various examples and inquire about solving z-transforms without relying on tables. The response highlights that evaluating z-transforms involves series evaluation, although tables and software can simplify the process. Overall, the conversation emphasizes the importance of grasping geometric series for further mathematical applications.
nacho-man
Messages
166
Reaction score
0
Hi, just wanted to know what property/?? was used to get from the first red-box to the second one.

It looks like it has to do with the geometric sum, but my series/sequence is verrrrrry rusty.

any help appreciated, I'd like to find the general property so I can apply this rule to different examples. I can see that the bounds of the sum has altered the outcome also.

IF anyone could explain this to me, or link me to some relevant theory I would be ecstatic.many thanks in advance.

(see attached image)edit: my brain is fried, there are tables which give these direct results! awesome.
just wondering though, is there a way to solve for z-transforms without having to consult a table?
Although this last question is probably reserved for a different sub-board.

thanks anyway.!
 

Attachments

  • HELP ME MHB PLZZZ.jpg
    HELP ME MHB PLZZZ.jpg
    14.6 KB · Views: 96
Last edited:
Mathematics news on Phys.org
That is the sum of a geometric series, consider:

We'll represent a geometric series by $S_n=\sum ar^{n-1}$

$$S_n=a+ar+ar^2+...+ar^{n-1}$$

Multiply both sides by $r$:

$$rS_n=ar+ar^2+...+ar^{n-1}+ar^n$$

Subtract from $S_n$ so that most of the terms cancel:

$$S_n - rS_n=a-ar^n$$
$$(1-r)S_n=a(1-r^n)$$
$$S_n = \frac{a(1-r^n)}{1-r}$$

$a$ is the first term, which in your case, is $1$.
$r$ is the common ratio which is what we're multiplying "$n$" times: $az^{-1}$

Applying $S_n$, we get from the first red box to the second :D I don't think I'll be able to answer your other questions though, I've only just started learning series.
 
Last edited:
nacho said:
edit: my brain is fried, there are tables which give these direct results! awesome.
just wondering though, is there a way to solve for z-transforms without having to consult a table?

Hi nacho,

Evaluating a z-transform without tables is exactly what is done here.
It depends on evaluating a series.

Tables or math software make your life much easier for complicated z-transforms though.
 
wonderful, thanks heaps guys.
A revision session is long overdue haha!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top