What Role Do Particles Play in Understanding Planck Scales in Quantum Gravity?

victorvmotti
Messages
152
Reaction score
5
I see that we use dimensional analysis involving constants of nature to obtain the Planck length and then apply the uncertainty principle to find the corresponding Planck mass-energy.

But the energy and length scales were found by invoking a "particle" interpretation of fundamental entities of nature. Wasn't it?

This is not still clear for me, I mean, where and how we used the notion of particles to obtain Planck scales?

I am not deep into the quantum field theory yet, but if we let go of the notion of particles and introduce the fields (real or complex set of functions of spacetime) instead as the fundamental entities of nature, then can we make sense of arbitrarily large energies or small distances?

But gravity does not still have any valid QFT, it is now a classical theory, so we say for arbitrarily small distances on space, there should be only quantum fields, and therefore we are waiting for quantum gravity?

Am I right in the above argument?
 
Physics news on Phys.org
Spin foam is where quantum gravity is headed, but apparently it is way out of my "field" of expertise.
 
jerromyjon said:
Spin foam is where quantum gravity is headed

It's one possible quantum gravity model that's being pursued, but I think it's way too soon to say that is "where quantum gravity is headed". There are other models, and very, very few testable predictions.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top