Just some follow up:
Well, if you substitute y_p(x) into (2) above, it gets a little messy, do this and that, equate coefficients, some things cancel, and we're left with:
y_p(x)=e^{-2x}+\frac{1}{2}xe^{-2x}Sin(x)
So that the general solution is:
y(x)=c_1e^{-2x}Cos(x)+c_2e^{-2x}Sin(x)+e^{-2x}+\frac{1}{2}xe^{-2x}Sin(x)
Letting:
y(0)=1
y'(0)=1
we get:
y(x)=3e^{-2x}Sin(x)+e^{-2x}+\frac{1}{2}xe^{-2x}Sin(x)
I've attached a plot of this solution. Tony, you can do all this right?