First of all, this has been answered in the preface to Srednicki's QFT text, a draft of which is available free:
http://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf
There he lists in the preface some equations that if you recognise all of them, then you should be able to follow everything in the book. (It's also a useful, and free, book!)
When you say you've "done" quantum mechanics... this needs to have been at a reasonably advanced level to really appreciate what's going on in field theory. For example, would you be comfortable explaining to someone what exactly the Pauli matrices have to do with spin-1/2 particles; what the S-matrix is; and what the relationship between unitary operators that depend continuously on some parameter (such as rotation by some angle ) and observables is, and how this parallels Noether's theorem from classical mechanics? If so, you should be fine.
The great thing about Weinberg's text is that he builds QFT out of familar quantum-mechanical principles, so that if you're not completely comfortable with e.g. the scattering formalism, he develops it for you in a way that suits the subsequent development. There's also all kinds of stuff in there that really can't be found anywhere else. The downside is that this makes it a bit of a slog. If you're not familiar with these ideas then learning them from Weinberg is hard going (as I found!), because it's really intended as a review from a particular vantage point. Furthermore, because of the unique logical structure of his book, as well as highly unconventional notation, it's essentially impossible to get around working through the book in detail. If you're studying on your own, then this obviously shouldn't be a problem, but if you're studying for a course then the development in Weinberg might be too slow for your reading to keep pace with lectures that adopt any other approach to the subject at all. (For example, it's 260 pages before the chapter in which he introduces Feynman diagrams starts; in the same number of pages, Peskin and Schroeder have covered all manner of radiative corrections in quantum electrodynamics.)
I'm sure there's a great many discussions of QFT books on here- because it's a hard subject, everybody ends up using several texts to try and get their head around it, and apart from Weinberg (which everyone agrees is uniquely insightful, but a hard slog) and Srednicki (which actually most people seem to like) I can't think of a text that hasn't polarised opinions, so you might like to read around to get a variety of opinions.