What substitution can be used to solve this integral?

  • Thread starter Thread starter Bazzinga
  • Start date Start date
Bazzinga
Messages
45
Reaction score
0
So I've gotten the integral that I'm doing now down to:

int(cos(x)/sin^2(x) dx)

I looked it up on one of those online integral calculators to get me on the right track, and the answer is:

-1/sin(x)

It seems so simple, what am I missing?
 
Physics news on Phys.org
An ordinary substitution will do here: u = sin(x), du = cos(x)dx. Then your integral is
\int \frac{du}{u^2} = \int u^{-2}du
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top