maw26
- 5
- 0
F (n): (for all a, b €N) (max (a, b) =n --> a=b)
Where max (a, b) is the maximum of the two numbers a, b
--------------------------------------------------------------------
1st
F (0)
Max (a, b) = 0 then a≤0 and b≤0 so a=0 and b=0 a=b so F (0) true
Then
Suppose F (K) is true
Let max (a, b) = K+1 then max (a-1, b-1) =k
So a-1=b-1.however, this implies a-1+1=b-1+1, i.e. a=b
By the induction we proof that F (n) is true for all n € N
Where max (a, b) is the maximum of the two numbers a, b
--------------------------------------------------------------------
1st
F (0)
Max (a, b) = 0 then a≤0 and b≤0 so a=0 and b=0 a=b so F (0) true
Then
Suppose F (K) is true
Let max (a, b) = K+1 then max (a-1, b-1) =k
So a-1=b-1.however, this implies a-1+1=b-1+1, i.e. a=b
By the induction we proof that F (n) is true for all n € N