Benny
- 577
- 0
Homework Statement
<br /> \frac{{\partial u}}{{\partial t}} = \frac{{\partial ^2 u}}{{\partial x^2 }} + 1,0 < x < \infty ,t > 0<br />
Let \xi = \frac{x}{{\sqrt t }} and write u = t^b f\left( \xi \right). Determine the value of b required for f\left( \xi \right) to satisfy an ordinary differential equation involving itself and \xi only.
The Attempt at a Solution
I just set u = (t^b)f and substituted into the PDE (using the chain rule). I obtained
<br /> \frac{{d^2 f}}{{d\xi ^2 }} + \frac{\xi }{2}\frac{{df}}{{d\xi }} - bf\left( \xi \right) = - t^{1 - b} <br />
I thought about setting b = 0 so that I could use reduction of order but then there will always be a 't' term. Setting b = 1 leaves me with a constant on the RHS which I can't get rid of. I've checked my working and the ODE I've arrived at seems to be correct. I don't know how to go any further. Any help would be good thanks.