What Values of (x, y) Make f(x, y) = 1/(x - y^2) Undefined?

  • Thread starter Thread starter M.Qayyum
  • Start date Start date
  • Tags Tags
    Domain
M.Qayyum
Messages
13
Reaction score
0
Here is my question, that what is the domain of f, while
f(x,y)=1/(x-y2)
 
Physics news on Phys.org
Ask yourself this question, and you'll have answered your own question:

For what values of (x,y) is f(x,y) undefined?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top