What were the original speeds of the cars?

  • Thread starter Thread starter Libohove90
  • Start date Start date
  • Tags Tags
    Cars
AI Thread Summary
The discussion centers on solving a physics problem involving two cars with different masses and kinetic energies. One car has twice the mass of the other but only half the kinetic energy, and after both increase their speed by 7.0 m/s, they achieve equal kinetic energy. The equations derived from the problem lead to a relationship between their speeds, ultimately simplifying to a form where the original speed of the first car, v1, can be expressed as v1 = 7.0 / sqrt(2). The solution process involves manipulating the equations and rationalizing the denominator to find the original speeds. The final answer for v1 is approximately 4.9 m/s.
Libohove90
Messages
40
Reaction score
0

Homework Statement


One car has twice the mass of a second car, but only half as much kinetic energy. When both cars increase their speed by 7.0 m/s, then they have the same kinetic energy. What were the original speeds of the two cars?

Homework Equations


Initial, K1 = 1/2 K2

Final, K1 = K2

m1 = 2m2

K=1/2 mv^2

v1 = 1/2 v2

The Attempt at a Solution



Since K1 = K2 after the cars' velocities were increased by 7.0 m/s, I can write:

1/2 m1 (v1+7.0 m/s)^2 = 1/2 m2 (v2+7.0 m/s)^2

Since I know m1 = 2m2, I plug it in and I get

1/2 * 2m2 (v1+7.0m/s)^2 = 1/2 m2 (v2+7.0 m/s)^2 and then simplified:

m2 (v1 + 7.0 m/s)^2 = 1/2 m2 (v2 + 7.0 m/s)^2, and then simplified again:

2(v1 + 7.0 m/s)^2 = (v2 + 7.0 m/s)^2

I know that by the initial conditions given, 2v1 = v2 and I plug it in and get:

2(v1 + 7.0 m/s)^2 = (2v1 + 7.0 m/s)^2 and then I get rid of the squares and get:

Sqrt 2 (v1 + 7.0 m/s) = (2v1 + 7.0 m/s)

I start having trouble from here on. According to my teacher's notes, the step after the previous equation above given is v1 = 7.0 / sqrt 2, giving the answer of v1 = 4.9 seconds. Where did that come from?
 
Physics news on Phys.org
Distribute the sqrt(2) in the left hand side over both terms. Then collect like terms on each side of the equation (so that everything that multiplies v1 is on one side, and everything that multiplies 7 m/s is on the other side). Then, solve for v1. On the other side of the equation, you'll have a fractional expression multiplying 7 m/s. Rationalize the denominator of this expression and simplify.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top