LaTeX What's Causing the Display Issue with My LaTex Code?

  • Thread starter Thread starter bomba923
  • Start date Start date
  • Tags Tags
    Latex
AI Thread Summary
The discussion centers on a LaTeX code issue where the user is struggling to display their work correctly. They inquire about the reasons for the display problems and seek guidance on formatting their code to ensure all content is visible without scrolling issues in browsers. The conversation includes technical details about manipulating mathematical expressions and suggests methods for simplifying and organizing LaTeX code to enhance readability. Ultimately, the user aims to understand how to structure their LaTeX commands effectively to avoid display errors. Proper formatting and command line management are emphasized as key solutions.
bomba923
Messages
759
Reaction score
0
What's wrong with my code? Why would LaTex show my work?

\begin{array}{l}<br /> r = \frac{1}{{k - 1}}\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \bar x}}{{S_x }}} \right)\left( {\frac{{y_n - \bar y}}{{S_y }}} \right)} \right]} = \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}}}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}}}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}<br /> {\rm multiply both fractions} \\ <br /> {\rm by }\frac{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/<br /> {\vphantom {1 k}}\right.\kern-\nulldelimiterspace}<br /> \!\lower0.7ex\hbox{$k$}}} \right)}}{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/<br /> {\vphantom {1 k}}\right.\kern-\nulldelimiterspace}<br /> \!\lower0.7ex\hbox{$k$}}} \right)}} = \frac{{k^{ - 1} }}{{k^{ - 1} }} = \frac{k}{k} = 1 \\ <br /> \end{array} \right) \Rightarrow \\ <br /> \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}<br /> {\rm rewrite the bottoms sums over} \\ <br /> {\rm a common denominator,}\;\left( k \right) \\ <br /> \end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \\ <br /> \Rightarrow \left( \begin{array}{l}<br /> {\rm Expand the bottom sums to factor } \\ <br /> {\rm out }\left( k \right).{\rm Because we have a sum of } \\ <br /> squares{\rm , we will factor out a }\left( {k^2 } \right) \\ <br /> \end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{k^2 \left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{k^2 \left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}<br /> {\rm From this, we can solve the square root of} \\ <br /> \;\left( {k^2 } \right)\;{\rm to place this value outside the radical } \\ <br /> \end{array} \right) \Rightarrow \\ <br /> \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}<br /> {\rm The }\left( k \right){\rm values will cancel } \\ <br /> {\rm as we multiply:}\;k \cdot \sqrt {\frac{1}{{k^2 }}} = 1 \\ <br /> \end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \\ <br /> \Rightarrow \left( \begin{array}{l}<br /> {\rm We express the bottom radical as a} \\ <br /> {\rm a radical numerator divided by }\sqrt {k - 1} ; \\ <br /> {\rm therefore, we can place }\sqrt {k - 1} {\rm in the } \\ <br /> {\rm numerator of the entire equation } \\ <br /> \end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left\{ {\left[ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\sqrt {k - 1} }}{{\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } }}} \right]\left[ {\frac{{\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)\sqrt {k - 1} }}{{\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } }}} \right]} \right\}} \Rightarrow \left( \begin{array}{l}<br /> {\rm We can multiply both z - score expressions} \\ <br /> {\rm to simplify the sum and remove }\sqrt {k - 1} \\ <br /> \end{array} \right) \Rightarrow \\ <br /> \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\frac{{\left( {k - 1} \right)\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}{{\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } } \right)\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } } \right)}}} \right]} = \sum\limits_{n = 1}^k {\left\{ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }}} \right\}} = = \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)} \right]} }}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }} \Rightarrow \\ <br /> \Rightarrow \left( {{\rm Substitute}\left\{ \begin{array}{l}<br /> a = \sum\limits_{n = 1}^k {x_n } \\ <br /> b = \sum\limits_{n = 1}^k {y_n } \\ <br /> \end{array} \right\}} \right) \Rightarrow \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right) + ab} \right]} }}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k + a^2 } \right)} } \right]\left[ {\sum\limits_{n = 1}^k {y_n^2 k^2 - 2by_n k + b^2 } } \right]} }} = \Rightarrow \left( \begin{array}{l}<br /> {\rm We can take out}\left( {ab} \right){\rm from the } \\ <br /> {\rm numerator and the}\left( {a^2 ,b^2 } \right){\rm from the } \\ <br /> {\rm denominator as}\left( {kab} \right){\rm and}\left( {a^2 k,b^2 k} \right) \\ <br /> \end{array} \right) \Rightarrow \frac{{kab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right)} \right]} }}{{\sqrt {\left[ {a^2 k + \sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k} \right)} } \right]\left[ {b^2 k + \sum\limits_{n = 1}^k {\left( {y_n^2 k^2 - 2by_n k} \right)} } \right]} }} \Rightarrow \\ <br /> \Rightarrow \left( \begin{array}{l}<br /> {\rm Then, we can factor out the} \\ <br /> \left( k \right){\rm from the sum expressions} \\ <br /> \end{array} \right) \Rightarrow = \frac{{kab + k\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} }}{{\sqrt {\left[ {a^2 k + k\sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 k + k\sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = = \frac{{k\left\{ {ab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} } \right\}}}{{\sqrt {k^2 \left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} \Rightarrow \left( \begin{array}{l}<br /> {\rm The}\left( {k^2 } \right){\rm in the denominator} \\ <br /> {\rm radical can be taken out and} \\ <br /> {\rm will cancel with the }\left( k \right) \\ <br /> {\rm in the equation numerator} \\ <br /> \end{array} \right) \\ <br /> = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}{{\sqrt {\left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}{{\sqrt {\left\{ {a^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2a} \right)} \right]} } \right\}\left\{ {b^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2b} \right)} \right]} } \right\}} }} \Rightarrow \left( \begin{array}{l}<br /> {\rm Replace variables }\left( {a,b} \right) \\ <br /> {\rm with their original assignments} \\ <br /> \end{array} \right) \Rightarrow \\ <br /> \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}{{\sqrt {\left[ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n \sum\limits_{n = 1}^k {x_n } } \right)} } \right]\left[ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n \sum\limits_{n = 1}^k {y_n } } \right)} } \right]} }} = \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}{{\sqrt {\left\{ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2\sum\limits_{n = 1}^k {x_n } } \right)} \right]} } \right\}\left\{ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2\sum\limits_{n = 1}^k {y_n } } \right)} \right]} } \right\}} }} \\ <br /> \end{array}

What does it mean;--what's "invalid" here?
 
Physics news on Phys.org
Hmm---I think I fixed it; how do you know when to press enter and start a new command line, so you can see my WHOLE work? (because browser's don't scroll that far!)
\begin{gathered}<br /> r = \frac{1}<br /> {{k - 1}}\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \bar x}}<br /> {{S_x }}} \right)\left( {\frac{{y_n - \bar y}}<br /> {{S_y }}} \right)} \right]} = \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}<br /> {k}}}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)\left( {\frac{{y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}<br /> {k}}}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}<br /> \text{multiply both fractions} \hfill \\<br /> \text{by }\frac{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/<br /> {\vphantom {1 k}}\right.\kern-\nulldelimiterspace}<br /> \!\lower0.7ex\hbox{$k$}}} \right)}}<br /> {{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/<br /> {\vphantom {1 k}}\right.\kern-\nulldelimiterspace}<br /> \!\lower0.7ex\hbox{$k$}}} \right)}} = \frac{{k^{ - 1} }}<br /> {{k^{ - 1} }} = \frac{k}<br /> {k} = 1 \hfill \\ <br /> \end{gathered} \right) \Rightarrow \hfill \\<br /> \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}<br /> \text{rewrite the bottoms sums over} \hfill \\<br /> \text{a common denominator,}\;\left( k \right) \hfill \\ <br /> \end{gathered} \right) \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {k}} \right)^2 } }}<br /> {{k - 1}}} }}} \right)} \right]} \hfill \\<br /> \Rightarrow \left( \begin{gathered}<br /> \text{Expand the bottom sums to factor } \hfill \\<br /> \text{out }\left( k \right).\text{ Because we have a sum of } \hfill \\<br /> squares\text{, we will factor out a }\left( {k^2 } \right) \hfill \\ <br /> \end{gathered} \right) \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}<br /> {{k^2 \left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}<br /> {{k^2 \left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}<br /> \text{From this, we can solve the square root of} \hfill \\<br /> \;\left( {k^2 } \right)\;\text{to place this value outside the radical } \hfill \\ <br /> \end{gathered} \right) \Rightarrow \hfill \\<br /> \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}<br /> {{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}<br /> {{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}<br /> \text{The }\left( k \right)\text{values will cancel } \hfill \\<br /> \text{as we multiply:}\;k \cdot \sqrt {\frac{1}<br /> {{k^2 }}} = 1 \hfill \\ <br /> \end{gathered} \right) \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}<br /> {{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}<br /> {{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}<br /> {{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \hfill \\<br /> \Rightarrow \left( \begin{gathered}<br /> \text{We express the bottom radical as a} \hfill \\<br /> \text{a radical numerator divided by }\sqrt {k - 1} ; \hfill \\<br /> \text{therefore, we can place }\sqrt {k - 1} \text{ in the } \hfill \\<br /> \text{ numerator of the entire equation } \hfill \\ <br /> \end{gathered} \right) \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left\{ {\left[ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\sqrt {k - 1} }}<br /> {{\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } }}} \right]\left[ {\frac{{\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)\sqrt {k - 1} }}<br /> {{\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } }}} \right]} \right\}} \Rightarrow \left( \begin{gathered}<br /> \text{We can multiply both z - score expressions} \hfill \\<br /> \text{to simplify the sum and remove }\sqrt {k - 1} \hfill \\ <br /> \end{gathered} \right) \Rightarrow \hfill \\<br /> \Rightarrow \left( {\frac{1}<br /> {{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\frac{{\left( {k - 1} \right)\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}<br /> {{\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } } \right)\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } } \right)}}} \right]} = \sum\limits_{n = 1}^k {\left\{ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}<br /> {{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }}} \right\}} = = \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)} \right]} }}<br /> {{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }} \Rightarrow \hfill \\<br /> \Rightarrow \left( {\text{Substitute}\left\{ \begin{gathered}<br /> a = \sum\limits_{n = 1}^k {x_n } \hfill \\<br /> b = \sum\limits_{n = 1}^k {y_n } \hfill \\ <br /> \end{gathered} \right\}} \right) \Rightarrow \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right) + ab} \right]} }}<br /> {{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k + a^2 } \right)} } \right]\left[ {\sum\limits_{n = 1}^k {y_n^2 k^2 - 2by_n k + b^2 } } \right]} }} = \Rightarrow \left( \begin{gathered}<br /> \text{We can take out}\left( {ab} \right)\text{from the } \hfill \\<br /> \text{numerator and the}\left( {a^2 ,b^2 } \right)\text{from the } \hfill \\<br /> \text{denominator as}\left( {kab} \right)\text{and}\left( {a^2 k,b^2 k} \right) \hfill \\ <br /> \end{gathered} \right) \Rightarrow \frac{{kab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right)} \right]} }}<br /> {{\sqrt {\left[ {a^2 k + \sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k} \right)} } \right]\left[ {b^2 k + \sum\limits_{n = 1}^k {\left( {y_n^2 k^2 - 2by_n k} \right)} } \right]} }} \Rightarrow \hfill \\<br /> \Rightarrow \left( \begin{gathered}<br /> \text{Then, we can factor out the} \hfill \\<br /> \left( k \right)\text{from the sum expressions} \hfill \\ <br /> \end{gathered} \right) \Rightarrow = \frac{{kab + k\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} }}<br /> {{\sqrt {\left[ {a^2 k + k\sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 k + k\sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = = \frac{{k\left\{ {ab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} } \right\}}}<br /> {{\sqrt {k^2 \left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} \Rightarrow \left( \begin{gathered}<br /> \text{The}\left( {k^2 } \right)\text{in the denominator} \hfill \\<br /> \text{radical can be taken out and} \hfill \\<br /> \text{will cancel with the }\left( k \right) \hfill \\<br /> \text{in the equation numerator} \hfill \\ <br /> \end{gathered} \right) \hfill \\<br /> = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}<br /> {{\sqrt {\left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}<br /> {{\sqrt {\left\{ {a^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2a} \right)} \right]} } \right\}\left\{ {b^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2b} \right)} \right]} } \right\}} }} \Rightarrow \left( \begin{gathered}<br /> \text{Replace variables }\left( {a,b} \right) \hfill \\<br /> \text{with their original assignments} \hfill \\ <br /> \end{gathered} \right) \Rightarrow \hfill \\<br /> \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}<br /> {{\sqrt {\left[ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n \sum\limits_{n = 1}^k {x_n } } \right)} } \right]\left[ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n \sum\limits_{n = 1}^k {y_n } } \right)} } \right]} }} = \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}<br /> {{\sqrt {\left\{ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2\sum\limits_{n = 1}^k {x_n } } \right)} \right]} } \right\}\left\{ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2\sum\limits_{n = 1}^k {y_n } } \right)} \right]} } \right\}} }} \hfill \\ <br /> \end{gathered}
 
1.It's in the wrong forum;
2.Don't abuse the latex code and mess up page layout.I don't want to change the # of pixels only to see your nonsense...
3.Use \\ or simply break the code (use [ tex ] & [ /tex ] tags more frequently.

Oh.4.Did i say that your post is a monstruosity which should be deleted?

Daniel.
 
Be nice!

But that is the largest I've seen.

bomba, I suggest you experiment on posts and use the "preview post" feature. Perhaps if you look at some posts by others that use LaTex and hit the "quote" button, as if you were going to reply, you will see how they did the formatting.
 
Sorry,Evo.I'm not (a) Saint : I overreact,sometimes...:redface:

Daniel.

P.S.The monstrusity part is not real,it's SURREAL :-p
 
Back
Top