I What's the Difference Between Zero Divisors and Torsion Elements?

  • I
  • Thread starter Thread starter CSteiner
  • Start date Start date
  • Tags Tags
    Elements Torsion
CSteiner
Messages
31
Reaction score
0
So I've been studying advanced linear algebra and have started learning about modules. However, I am having a hard time understanding the difference between a zero divisor and a torsion elements. The definitions seem extremely similar. Can someone offer a good definition of each and an explanation of the difference?
 
Physics news on Phys.org
i looked in atiyah macdonald and found this.

zero divisor is a concept applied to a ring, while torsion element is the analogous concept applied to a module. i.e. in a ring A, x is a zero divisor if xy=0 for some y≠0 in A.

If A is a ring and M is an A module, an element z of m is a torison element if xz=0 for some non zero divisor x in A.e.g. in an abelian group M, hence a module over the integers, an element z of M is torsion if and only if it generates a subgroup of finite order, i.e. if and only if nz = 0 for some n ≠0. in the integers there are of course no zero divisors (except 0).
 
Last edited:
Okay I think I understand now. However, I am noticing that the first definition invokes right multiplication whereas the second definition invokes left multiplication. In a module over a commutative ring this obviously won't make a difference, but is there some sort of subtle significance in the non commutative case?
 
i was thinking of the commutative case as i always do. (i read it in atiyah macdonald's book "commutative algebra".) in the non commutative case i suppose one has more notions, left zero divisor, right zero divisor, and a torsion element should be annihilated by a ring element which is neither i suppose, i.e. a "regular" element, but i am not an expert.
 
Okay, that makes sense, thanks!
 
there seems however to be some variation among different authors as Dummit and Foote e.g. define torsion elements more broadly, as any z such that xz=0 for a non zero element x of the ring, without requiring that x is not zero divisior. the more restriced definition came from a wiki article i found.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top