tpg
- 12
- 0
Hi everyone, I'm having an issue trying to make the abstract form of the schrodinger equation:
i\hbar\frac{\partial}{\partial t}\left|\psi\right\rangle = H\left|\psi\right\rangle
be consistent with the form that operates on wavefunctions in the position representation:
i\hbar\frac{\partial}{\partial t}\psi(x) = H\psi(x)
If I try to do this by plugging in \left|\psi\right\rangle =\int dx\,\psi(x)\left|x\right\rangle to the abstract form, I end up with a contradiction. Starting with the RHS:
i\hbar\frac{\partial}{\partial t}\left|\psi\right\rangle & = & i\hbar\frac{\partial}{\partial t}\left(\int dx\,\psi(x)\left|x\right\rangle \right)
& = & i\hbar\int dx\,\left(\frac{\partial\psi}{\partial t}\left|x\right\rangle +\psi\frac{\partial\left|x\right\rangle }{\partial t}\right)
If we then use the Schrodinger equation again on \frac{\partial\left|x\right\rangle }{\partial t}
\frac{\partial\left|x\right\rangle }{\partial t} & = & -\frac{i}{\hbar}H\left|x\right\rangle =\frac{i\hbar}{2m}\int dx'\,\left|x'\right\rangle \frac{\partial^{2}}{\partial x'^{2}}\left(\left\langle x'|x\right\rangle \right)
& = & \frac{i\hbar}{2m}\int dx'\,\left|x'\right\rangle \delta''(x-x')
& = & \frac{i\hbar}{2m}\frac{\partial^{2}\left|x\right\rangle }{\partial x^{2}}
Where above we use the identity \int dx\,\phi(x)\delta''(x-a)=\phi''(a). I think we can now use parts a couple of times, together with the fact that \psi (x) and \psi' (x) go to zero at infinity, to say that
\int dx\,\psi\frac{\partial\left|x\right\rangle }{\partial t} & = & \frac{i\hbar}{2m}\int dx\,\psi\frac{\partial^{2}\left|x\right\rangle }{\partial x^{2}}
& = & \frac{i\hbar}{2m}\int dx\,\frac{\partial^{2}\psi}{\partial x^{2}}\left|x\right\rangle
Now, the RHS of the TDSE will go to -\frac{\hbar^{2}}{2m}\int dx\,\frac{\partial^{2}\psi}{\partial x^{2}}\left|x\right\rangle.
If we multiply by \left\langle x\right| from the left on both sides,
we end up with
i\hbar\left(\frac{\partial\psi}{\partial t}+\frac{i\hbar}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}\right) & = & -\frac{\hbar^{2}}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}
\Rightarrow\quad\frac{\partial\psi}{\partial t} & = & 0
Clearly this is not right, as from the second form of the Schrodinger equation written down above, we get
\frac{\partial\psi}{\partial t} & = & \frac{i\hbar}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}
Can somebody help me find whereabouts I am going wrong here? Thanks.
i\hbar\frac{\partial}{\partial t}\left|\psi\right\rangle = H\left|\psi\right\rangle
be consistent with the form that operates on wavefunctions in the position representation:
i\hbar\frac{\partial}{\partial t}\psi(x) = H\psi(x)
If I try to do this by plugging in \left|\psi\right\rangle =\int dx\,\psi(x)\left|x\right\rangle to the abstract form, I end up with a contradiction. Starting with the RHS:
i\hbar\frac{\partial}{\partial t}\left|\psi\right\rangle & = & i\hbar\frac{\partial}{\partial t}\left(\int dx\,\psi(x)\left|x\right\rangle \right)
& = & i\hbar\int dx\,\left(\frac{\partial\psi}{\partial t}\left|x\right\rangle +\psi\frac{\partial\left|x\right\rangle }{\partial t}\right)
If we then use the Schrodinger equation again on \frac{\partial\left|x\right\rangle }{\partial t}
\frac{\partial\left|x\right\rangle }{\partial t} & = & -\frac{i}{\hbar}H\left|x\right\rangle =\frac{i\hbar}{2m}\int dx'\,\left|x'\right\rangle \frac{\partial^{2}}{\partial x'^{2}}\left(\left\langle x'|x\right\rangle \right)
& = & \frac{i\hbar}{2m}\int dx'\,\left|x'\right\rangle \delta''(x-x')
& = & \frac{i\hbar}{2m}\frac{\partial^{2}\left|x\right\rangle }{\partial x^{2}}
Where above we use the identity \int dx\,\phi(x)\delta''(x-a)=\phi''(a). I think we can now use parts a couple of times, together with the fact that \psi (x) and \psi' (x) go to zero at infinity, to say that
\int dx\,\psi\frac{\partial\left|x\right\rangle }{\partial t} & = & \frac{i\hbar}{2m}\int dx\,\psi\frac{\partial^{2}\left|x\right\rangle }{\partial x^{2}}
& = & \frac{i\hbar}{2m}\int dx\,\frac{\partial^{2}\psi}{\partial x^{2}}\left|x\right\rangle
Now, the RHS of the TDSE will go to -\frac{\hbar^{2}}{2m}\int dx\,\frac{\partial^{2}\psi}{\partial x^{2}}\left|x\right\rangle.
If we multiply by \left\langle x\right| from the left on both sides,
we end up with
i\hbar\left(\frac{\partial\psi}{\partial t}+\frac{i\hbar}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}\right) & = & -\frac{\hbar^{2}}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}
\Rightarrow\quad\frac{\partial\psi}{\partial t} & = & 0
Clearly this is not right, as from the second form of the Schrodinger equation written down above, we get
\frac{\partial\psi}{\partial t} & = & \frac{i\hbar}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}
Can somebody help me find whereabouts I am going wrong here? Thanks.